Interpreting ecology and behaviour from the vertebrate fossil track record

P. L. Falkingham¹,²

¹ Structure and Motion Laboratory, Royal Veterinary College, London, UK
² Department of Ecology and Evolution, Brown University, Providence, RI, USA

Keywords
track; trackway; fossil; ichnology.

Correspondence
Peter L. Falkingham, Structure and Motion Laboratory, Royal Veterinary College, London AL9 7TA, UK.
Email: pfalkingham@rvc.ac.uk

Editor: David Hone

Received 30 June 2013; revised 3 September 2013; accepted 10 September 2013
doi:10.1111/jzo.12110

Abstract
Fossil tracks represent a direct window onto the lives of extinct organisms, being formed and preserved in situ. Because track morphology is determined by limb motion, foot anatomy and substrate consistency, studies of fossil tracks can provide insight into producer, behaviour and palaeoenvironment. However, each determining factor is subject to variation, either continuous or discrete, and this variation may be co-dependent, making it difficult to correctly interpret a track. In addition to variance from the track-forming variables, tracks and tracksites are subject to further obfuscation because of time averaging, even before the effects of weathering, erosion and exposure are accounted for. This paper presents a discussion of the factors that may confound interpretation of fossil tracks, trackways and tracksites, and reviews experimental studies that have attempted to elucidate and eliminate these sources of confusion.

Introduction

The fossilized tracks and trackways of extinct vertebrates can offer a wealth of information about locomotion (Castanera et al., 2013), behaviour (Bibi et al., 2012), anatomy (Milner et al., 2009), ecology (Lockley, Hunt & Meyer, 1994a; Lockley et al., 2009) and evolution (Lockley et al., 1992) that complements the body fossil record (Thulborn, 1990), either by preserving complimentary information or by providing a secondary, independent source of data (Carrano & Wilson, 2001). Making inferences about such aspects of extinct organisms is made possible because track morphology (at the time of formation) is entirely determined by three factors: limb dynamics, substrate properties and foot shape (Padian & Olsen, 1984; Minter, Braddy & Davis, 2007), which means that the type of animal, the way the animal moves and the environment it moves through will all affect the shape of the track left behind.

Locomotion – Because tracks are a direct record of limb motion, they often receive particular attention for their utility in understanding the locomotion of extinct animals, particularly when the fossil taxa in question have no modern analogue (Farlow et al., 2000; Day et al., 2002; Wilson, Marsicano & Smith, 2009). For the majority of studies, general trackway parameters tend to be used to make inferences about locomotion; stride length and foot length, enabling the calculation of speed (Alexander, 1976; Thulborn, 1990) are the most common, frequently accompanied by other metrics such as pace angulation and track rotation (Leonardi, 1987). Relative placements (or even presence/absence) of the manus and pes can be informative as to the gait of the track maker – quadrupedal or bipedal, wide or narrow gauge, whether the tail was held high, all of which may be difficult to ascertain from bones alone (Wilson & Carrano, 1999; Wilson & Fisher, 2003; Henderson, 2006; Romano, Whyte & Jackson, 2007; Castanera et al., 2013).

However, features of morphology within individual tracks can also be highly informative. Particularly, deep tracks will, by their very nature, record more of the foot motion than shallow tracks. Such deep tracks can be used to describe the path of the foot through the substrate (Gatesy et al., 1999; Avanzini, Piñuela & García-Ramos, 2012). Although shallower tracks may record less motion, skin impressions and scale drag marks can still elucidate the angles at which the foot contacted and subsequently moved off the substrate (Gatesy, 2001).

The motion of distal elements of the limb (i.e. the manus or pes) is directly linked to the motion of more proximal limb elements, and ultimately of the animal itself. As such, changes in contact area, centre of pressure, and ground reaction force orientation and magnitude occur throughout the step cycle (Panagiotopoulou et al., 2012; Bates et al., 2013). As the pressure exerted by the foot increases (e.g. during toe-off when contact area is at a minimum), or when the applied force changes angle, the load may overcome the substrate shear strength and cause localized deformation (Falkingham et al.,...
The contributions of limb dynamics, anatomy and substrate to track morphology

The idea that foot anatomy affects the shape of the track is, of course, obvious. The substrate is directly deformed by the contact between the foot and the ground. A large round elephant foot will produce a very different track to one produced by a slender toed bird, irrespective of any other considerations. The converse is also true, that animals sharing a common pedal morphology will, if substrate and motion are consistent, produce tracks that are fundamentally alike. It is for this latter reason that neoichnological studies can be so enlightening – the conservative pedal morphology of theropods and their avian descendants has enabled workers to draw insightful conclusions about theropod dinosaur tracks from work with extant birds (Gatey et al., 1999; Milàn, 2006; Milàn & Bromley, 2006; Ellis & Gatey, 2013).

Track morphology is also intuitively linked to substrate – one only has to walk along a beach, moving closer to or further from the water to see a distinct change in the shape of the footprints left behind. A substrate can be described either morphologically (as grain size, angularity, composition) or mechanically (with terms such as stiffness, strength, compressibility, and cohesion). Although it is the latter that describes how a substrate will respond to load, palaeontologists are predominantly limited to observing the former. Unfortunately, most of the mechanical properties of a substrate are highly dependent upon water content, which can be almost impossible to determine from a lithified sediment. Instead, experimental data must be used to produce tracks in a range of substrates and compare these to fossil specimens. This is easier for some organisms, where body weight and kinematics can be relatively well constrained, such as with hominid tracks (e.g. Hatala et al., 2013; Morse et al., 2013), but can become somewhat circular in nature if the track maker and associated mass are unknown; are the experimental track and fossil track at the same depth because the substrate is the same, or because the experimental track was produced with a greater or lesser force than the fossil track?

The dynamics of the distal limb, which include both the motion of the foot and the associated forces applied to the substrate, represent the third contributor to track morphology. The orientation and force with which the foot interacts with the substrate will ultimately determine the directions in which the substrate deforms, and consequently the track morphology. A foot which encounters the substrate while moving forward at a low angle may produce a shallow rear to the track from the metatarsus (Gatey et al., 1999) while a vertically emplaced foot will produce a track with steep, vertical walls (providing the sediment can sufficiently hold such a form) (Milàn, Christiansen & Mateus, 2005). The dynamic nature of the foot-sediment interface and of the animal’s mass passing...
over the foot means that throughout the stance phase of the step cycle (i.e. while the foot is in contact with the substrate) the load applied to the substrate will vary in position, direction and magnitude, dynamically affecting the formation of the track.

Each of the above factors can vary independently or in conjunction with each other (e.g. when an organism must adapt limb kinematics to deal with changes in substrate consistency), and these variations can be both continuous (e.g. substrate moisture content) and discrete (number of digits on the foot). While Baird (1957) noted that a track was the by-product of dynamic contact between an organism and its environment, Padian & Olsen (1984) were the first to conceptualize the contributions to track morphology from anatomy, kinematics and substrate by placing the three factors into a ternary diagram. Their goal was to illustrate that the morphology of a particular track (in this case, *Pteraichnus*) was heavily influenced by substrate, to the extent that foot anatomy was obscured, making track maker identification difficult. Minter *et al.* (2007) presented a variation of these three factors in a Venn diagram, using substrate, behaviour and producer as the formational factors not only for tracks, but for all trace fossils. Here, I suggest that, at least for tracks, the terms dynamics, anatomy and substrate are the most apt descriptors of the contributing factors to track morphology. ‘Dynamics’ encompasses both kinematics (motion) and kinetics (forces), and is the means by which any given behaviour is expressed as a trace. ‘Anatomy’ is preferable over ‘producer’, as producer may vary while pedal anatomy remains conserved, and thus ‘producer’ sensu stricto is not the variable affecting the track shape. Substrate is perhaps the most nebulous term of the three, referring to a complex range of morphological and mechanical properties, and to say that ‘the substrate varies’ is to paint a broad brush over a highly complex factor. Nevertheless, substrate is discrete from anatomy and dynamics, and it serves to consider it as an independent variable, or at least suite of variables, when discussing track morphology.

Together, these three variables control all possible track morphologies (at least prior to preservation), and therefore define a morphospace (Fig. 1). If any one of these variables is known (or constrained), the morphospace becomes a two-dimensional plane. Fixing a second or third variable will reduce the morphospace further, first to a one-dimensional line, and finally to a single point.

Difficulties in interpreting tracks and experimental work shedding light on these difficulties

The three-dimensional (3D) nature of tracks – volumes and topology

Because dynamics, substrate and anatomy ultimately determine the 3D morphology of the track, ichnologists can attempt to reverse engineer track formation in order to tease out data about how the limb moved, the shape of the foot (and subsequently the identity of the producer) and the environmental conditions when the track was formed. However, the interplay of the three factors results not only in 3D topography at the surface, but also 3D deformation subsurface either through transmission of force (Allen, 1989, 1997; Manning, 2004; Milàn, Clemmensen & Bonde, 2004; Milàn & Bromley, 2006, 2008; Falkingham *et al.*, 2011a; Thulborn, 2012) and/or penetration of the sediment by the foot leading to the formation of deep tracks (Gatesy, 2003).

Surface morphology can – and should – readily be captured and analysed. Historically vertebrate ichnology has been limited to recording only two dimensions, initially by outline and/or shaded drawings, later accompanied by photographs. An initial movement towards adopting 3D documentation techniques such as moire photography (Ishigaki & Fujisaki, 1989), anaglyph stereo imaging (Gatesy, Shubin & Jenkins, 2005), photogrammetry (Breithaupt & Matthews, 2001; Breithaupt *et al.*, 2004; Breithaupt, Matthews & Noble, 2004; Matthews, Noble & Breithaupt, 2006) and laser scanning (Bates *et al.*, 2008a,b) has grown towards becoming a standard for ichnological documentation (Bates *et al.*, 2009;
Remondino et al., 2010; Farlow et al., 2012; Belvedere et al., 2013; Bennett et al., 2013), aided by advances in consumer digitization, particularly with photogrammetry (Falkingham, 2012, 2013).

It is not always possible to see beneath the exposed surface of a fossil track, requiring either natural breaks or deliberate cross-sectioning, both of which are destructive and thus not possible for protected tracksites. It may also be that a track is emplaced in what becomes a homogeneous rock layer, where subsurface deformation cannot be observed even if the subsurface sediment is exposed, because the necessary delineations created by laminations are absent. Nevertheless, an appreciation of subsurface geometry is required in order to attempt to identify exposed surfaces as ‘true tracks’ or ‘undertracks’ (Milàn & Bromley, 2006). This is important because apparent track morphology changes within the volume, and so interpretations based on misidentified surfaces can be flawed. Many experimental studies have focused on this difficulty in considering tracks as 3D volumes, and have presented numerous methods for ‘seeing’ beneath the foot-sediment interface including using plaster or cement between friable layers (Manning, 2004; Milàn & Bromley, 2008), coloured plasticine (Allen, 1989, 1997), biplaner X-rays (Ellis & Gatesy, 2013) and computer simulation (Falkingham et al., 2009; Falkingham, Margetts & Manning, 2010b; Falkingham et al., 2011a,b). Even observing or defining the foot-sediment interface can be difficult if the sediment has sealed upon removal of the trackmaker’s foot; the interface or direct track sensu Gatesy (2003), will then exist within the volume and is unlikely to be exposed at any natural break.

Time averaging

A fossil track is a recording of a brief moment in an animal’s life. In this regard, a track represents a very narrow window of time preserved in the rock. A tracksite (multiple tracks and trackways on a single surface), however, cannot be constrained so confidently, and while time averaging of a tracksite is considered to operate over a much briefer time scale than for body fossils (Cohen et al., 1991), it may still be significant. It may be tempting to view a tracksite as being produced by contemporaneous animals, particularly if tracks appear parallel or associated in some other way, but a sediment may be exposed and susceptible to track formation continuously or sporadically over minutes, days, months or even years. This can make interpretations of gregarious behaviour and population dynamics (Ostrom, 1972; Lockley et al., 2002, 2009; Myers & Fiorillo, 2009) from fossil tracks difficult to substantiate. While time averaging is difficult to investigate experimentally, at least for specific sites, hypotheses of contemporaneity can be tested by examining the morphology of individual tracks – do the tracks show similar deformation structures that would indicate comparable substrate conditions at the time the tracks were made? For example, do displacement rims around tracks indicate a similar level of consistency and incompressibility within the substrate, or does the sediment show shearing or cracking in the same way between tracks? To phrase this differently, if all tracks at a site were placed conceptually into the 3D morphospace of dynamics-substrate-anatomy (Fig. 1), would the substrate contribution to morphology remain constant?

Covariance of dynamics-substrate-anatomy

As mentioned briefly above, there are occasions when two or more of the formational variables (dynamics, substrate, anatomy) become intrinsically linked. An animal is unlikely to be able to use the same gait to move over firm sand as for deep, soupy mud and this can be seen in neoinchological experiments (Falkingham, pers. obs. 2013). As such, tracks made in two mechanically very different substrates will differ in morphology because both sediments behave differently, and from a change in the dynamics of the foot. Taken to an extreme, a submerged substrate may result in the preservation of tracks recording swimming (or at least ‘punting’), rather than terrestrial locomotion (Milner et al., 2006).

Alternatively, substrate and limb dynamics may determine which parts of the foot are able to make an impression, shifting the morphospace of track morphology with respect to the anatomy axis. The variable distribution of under-foot pressure may mean that some parts of the pedes may fail to deform the substrate; for instance, a tridactyl foot may produce enough pressure under two digits to indent the substrate but fail to leave a mark for the third, resulting in apparently didactyl tracks (Falkingham et al., 2010b; fig. 5). In the same way, as a substrate becomes softer and the foot sinks deeper, more of the anatomy becomes involved in forming the track (e.g. Gatesy et al., 1999). For instance, two tridactyl feet, identical save for the orientation of the hallux, may produce identical shallow tracks (providing dynamics and substrate remain consistent) which occupy the same point in morphospace, but produce tracks differing in morphology in deep substrates.

Conclusions

The wealth of information recorded in a track, trackway or tracksite is immense and ranges from the specific locomotor dynamics and behaviours of individual animals to the complex interactions between multiple individuals and species. Unfortunately, disentangling the contributions to track morphology from dynamics, anatomy and substrate is not trivial. It is not as though one factor contributes to track morphology and is then subsequently altered by another factor, enabling us to work backwards in a step-wise fashion. Rather, it is that the three factors combine simultaneously to produce a single morphology. Adding to this complexity, the final morphology is inherently volumetric, but is almost always expressed only as a single surface (which may or may not represent the surface upon which the track was made), limiting what data can be used to reverse engineer the formation of the track.

Experimental ichnology is the means with which we explore the contributing factors and essentially ‘fill in’ track morphospace with the resultant morphologies of known dynamics, anatomy and substrate. In order to do this, it is imperative that experimental neoinchological work details the
sedi
ment properties (ideally both mechanical and morphologi
cal), the shape (and stiffness) of the foot, and the movement
and forces with which the foot was indented. Ideally, 3D
digital models of experimental tracks should be made and
distributed, enabling ichnologists to compare the experi
mental tracks with exposed surfaces seen in fossil tracks, and
provide more confidence with which to interpret the produc
ers, behaviours and palaeoenvironments of extinct organisms
from their tracks.

Acknowledgements

This work was supported by a Marie Curie International Out
going Fellowship within the 7th European Framework Prog
ramme. I wish to thank Stephen Gatesy and Karl Bates for
useful discussions and insight, and to extend my gratitude for
the useful reviews provided by Daniel Marty and Stu Pond.

References

Allen, J.R.L. (1997). Subfossil mammalian tracks (Flandrian)
in the Severn Estuary, S. W. Britain: mechanics of for
mation, preservation and distribution. Philos. Trans. R.
Jurassic footprints reveal walking kinematics of theropod
dinosaurs. Lethaia 45, 238–252.
Baird, D. (1957). Triassic reptile footprint faunules from
Bates, K.T., Falkingham, P.L., Hodgetts, D., Farlow, J.O.,
Breithaupt, B.H., O’Brien, M., Matthews, N.A., Sellers,
Three dimensional modelling and analysis of dinosaur
Bates, K.T., Rarity, F., Manning, P.L., Hodgetts, D., Vila,
B., Oms, O., Galobart, À. & Gawthorpe, R. (2008b).
High-resolution LiDAR and photogrammetric survey of the
Fumanya dinosaur tracksites (Catalonia): implications for
the conservation and interpretation of geological heritage
Bates, K.T., Savage, R., Pataky, T.C., Morse, S.A., Webster,
E., Falkingham, P.L., Ren, L., Qian, Z., Bennett, M.R.,
McClymont, J. & Crompton, R.H. (2013). Does footprint
depth correlate with foot motion and pressure? J. R. Soc.
Interface 10, 20130003.
Belvedere, M., Jalil, N.-E., Breda, A., Gattolin, G., Bourget,
prints from the Kem Kem beds (Morocco): a novel
ichnological approach to faunal reconstruction. Palaeogeog.
Crompton, R.H. (2013). Preserving the impossible: conser
vation of soft-sediment hominin footprint sites and strat
egies for three-dimensional digital data capture. PLoS ONE 8,
e60755.
Bibi, F., Kraatz, B., Craig, N., Beech, M., Schuster, M. &
Hill, A. (2012). Early evidence for complex social structure
in Proboscidea from a late Miocene trackway site in the
tegrated approach to three-dimensional data collection at
palaeontological resources using photogrammetry and geo
graphic information systems. in Harmon, D., ed., Crossing
Boundaries in Park Management: Proceedings of the 11th
Conference on Research and Resource Management in
Parks and Public Lands, The George Wright Society, Inc.
Breithaupt, B.H., Southwell, E.H., Adams, T. & Matthews,
N.A. (2001). Innovative documentation methodologies in the
study of the most extensive dinosaur tracksite in Wyoming.
113–122.
and the tetrapod track record. Paleobiology 27, 564–582.
Castanera, D., Vila, B., Razzolini, N.L., Falkingham, P.L.,
Canudo, J.I., Manning, P.L. & Galobart, À. (2013). Manus
track preservation bias as a key factor for assessing
trackmaker identity and quadrupedalism in basal
Modern vertebrate track taphonomy at Lake Manyara,
neichnology of terrestrial arthropods. Palaeogeogr.
Day, J.J., Upchurch, P., Norman, D.B., Gale, A.S. & Powell,
Science 296, 1659.
Taphonomy and paleoecology inferences of vertebrate
ichnofossils from Guará Formation (Upper Jurassic),
for three-dimensional analysis of track formation.
Palaeontol. Electron. 16, 1T:16p; palaeo-electronica.org/
content/2013/371-x-ray-track-analysis
Einsom, P.C. (2002). Vertebrate trace fossils in the Purbeck
Limestone Group of southern England. Life Environ.
Purbeck Times 68, 203–220.
Ezquerra, R., Doublet, S., Costeur, L., Galton, P.M. &

