

PII: S1198-743X(19)30215-0
DOI: https://doi.org/10.1016/j.cmi.2019.05.002
Reference: CMI 1663

To appear in: Clinical Microbiology and Infection

Received Date: 8 March 2018
Revised Date: 24 April 2019
Accepted Date: 7 May 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Skov R*1, Varga A2, Matuschek E3, Åhman J2, Bemis D3, Bengtsson B4, Sunde M5, Humphries R6, Westblade L7, Guardabassi L8, Kahlmeter G2

1 Statens Serum Institut, Copenhagen, Denmark
2 EUCAST Development Laboratory, Växjö, Sweden
3 University of Tennessee, Knoxville, TN, USA
4 National Veterinary Institute, Uppsala, Sweden
5 Norwegian Veterinary Institute, Oslo, Norway
6 Accelerate Diagnostics, Tucson AZ, USA and, University of California, Los Angeles, CA, USA
7 Weill Cornell Medicine, New York, NY, USA
8 Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark

* Corresponding author: Phone: +45 20723291; E-mail: rsk@ssi.dk

Keywords: Staphylococcus pseudintermedius, susceptibility testing, oxacillin, cefoxitin, methicillin resistance, MRSP
Objectives: Until recently, the European Committee on Antimicrobial Susceptibility Testing (EUCAST) recommended the cefoxitin disk to screen for meca-mediated betalactam resistance in *Staphylococcus pseudintermedius*. A recent study indicated that cefoxitin was inferior to oxacillin in this respect. We have re-evaluated cefoxitin and oxacillin disks for screening for methicillin resistance in *S. pseudintermedius*. **Methods:** We included 224 animal and human *S. pseudintermedius* isolates from Europe (n=108) and North America (n=116), of which 109 were meca-positive. Disk diffusion was performed per EUCAST recommendations using 30 µg cefoxitin and 1 µg oxacillin disks from three manufacturers and Mueller-Hinton agar from two manufacturers. **Results:** Cefoxitin inhibition zones ranged from 6-33 mm for meca-positive *S. pseudintermedius* (MRSP) and from 29-41 mm for meca-negative *S. pseudintermedius* (MSSP). The corresponding oxacillin zone intervals were 6-20 mm and 19 – 30 mm. For cefoxitin 16% (14.8%-18.0%, 95% CI) of the isolates were in the area where positive and negative results overlapped. For oxacillin the corresponding number was 2% (1.6%-2.9%). For oxacillin a breakpoint of *S*, ≥20 mm and *R*,<20 mm resulted in only 0.4% and 1.1% VME and ME rates respectively. **Conclusions:** This investigation confirms that the 1 µg oxacillin disk predicts meca-mediated methicillin resistance in *S. pseudintermedius* better than the 30 µg cefoxitin disk. For a 1 µg oxacillin disk we propose that 20 mm should be used as cut off for resistance i.e. isolates with a zone diameter <20 mm are resistant to all beta-lactam antibiotics except those with effect against methicillin resistant staphylococci.

Introduction

Staphylococcus pseudintermedius is a coagulase-positive *Staphylococcus* species adapted to *Canidae* and one of the most important bacterial pathogens in dogs but also causes infections in humans including serious infections (1-4). The introduction of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for bacterial
identification has shown that the incidence of *S. pseudintermedius* infections in humans is probably underestimated due to mis-identification as *Staphylococcus aureus* (4-6).

Methicillin (β-lactam)-resistant *S. pseudintermedius* (MRSP) was first reported in 1999 in North America (7) and in 2006 in Europe (8). Since then, five MRSP lineages (CC45, 68, 71, 112, 258) with specific traits regarding antimicrobial resistance, genetic diversity and geographical distribution have spread globally (1, 9). Hitherto, according to our knowledge, only *meca*-based resistance have been reported in *S. pseudintermedius*. Variable MRSP prevalence among clinical isolates (1-33%) has been reported by recent studies from different geographical areas and study populations (2, 10-15). A study in the United States (US) showed that the prevalence of methicillin resistance in canine clinical isolates increased from <5% in 2001 to nearly 30% in 2007. Some MRSP clones such as sequence type (ST) 71 display resistance to virtually all antimicrobial agents licensed for veterinary use, posing one of the most challenging problems so far encountered in the antimicrobial management of veterinary infectious diseases. According to a recent review, approximately two thirds of MRSP isolates submitted to the multilocus sequence typing (MLST) database originate from skin samples associated with pyoderma, surgical site and wound infections (1).

Cefoxitin is endorsed by both the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Clinical and Laboratory Standards Institute (CLSI) as the preferred agent for detecting methicillin-resistant *Staphylococcus aureus* (MRSA) and methicillin-resistant coagulase-negative *Staphylococcus* (MRCoNS) isolates by disk diffusion (16-18). In contrast, there has been divergence between EUCAST and CLSI on the antimicrobial agent to use for the detection of MRSP by disk diffusion. EUCAST has
advocated for the use of cefoxitin, whereas CLSI recommends oxacillin for detection of MRSP (17, 18). Previous studies have shown that cefoxitin growth inhibition zone diameter breakpoints recommended for detection of MRSA (susceptible, \(\geq 22 \) mm; resistant, \(< 22 \) mm) and MRCoNS (S, \(\geq 25 \) mm; R, \(< 25 \) mm) are not reliable for MRSP (19). In 2012, based on a study of 1,146 \textit{S. pseudintermedius} isolates originating from different regions in the US, Bemis et al. proposed an epidemiological cut-off value for non-wildtype of \(\leq 30 \) mm to maximize sensitivity (97%) and specificity (92%) for predicting methicillin resistance by cefoxitin disk diffusion (20). Our group further investigated 243 \textit{S. pseudintermedius} isolates to identify the most suitable cefoxitin breakpoint to distinguish between MSSP and MRSP. The isolates were predominantly of European origin and the results indicated a breakpoint of S, \(\geq 35 \) mm and R, \(< 35 \) mm with only two (0.4%) major errors (ME) and one (0.2%) very major error (VME) (unpublished own data). On the basis of these data, these breakpoints were added to the EUCAST breakpoint table 4.0 published January 2014 (21). However, in a subsequent study Wu et al. showed that the EUCAST breakpoint produced a significant number of major errors (ME) in a study using 115 human and veterinary "\textit{Staphylococcus intermedius} group" isolates (111 \textit{S. pseudintermedius} and four \textit{S. delphini} isolates) from the US. The authors concluded that cefoxitin disk diffusion is not reliable for MRSP detection and that laboratories should perform oxacillin disk diffusion or broth-based minimum inhibitory concentration tests (22). This was confirmed by Yarbrough et al. who found that none of 12 MRSP isolates were detected by cefoxitin disk diffusion whereas all 12 were detected using oxacillin disk diffusion (4).
The current study was conducted to re-evaluate disk diffusion breakpoints using cefoxitin (30 µg disk) and oxacillin (1 µg disk) disk diffusion to detect meca-mediated β-lactam resistance in *S. pseudintermedius* using disks from three manufacturers and Mueller-Hinton agar (MHA) from two manufacturers. For the present evaluation, our strain collection included strains from both Europe and North America to take the marked differences in the distribution of clonal lineages existing between these two geographical regions into account (1).

Materials and Methods

Bacterial isolates

A total of 224 clinical *S. pseudintermedius* isolates were tested, including 115 meca-negative (MSSP) isolates and 109 meca-positive (MRSP) isolates. The isolates were obtained from colleagues in Europe and North America representing a convenience sampling and included the 111 *S. pseudintermedius* isolates described by Wu and colleagues. Sixty-seven isolates from dogs and six from cats isolated between 2006 and 2011 were from a strain collection at the National Veterinary Institute in Sweden (SVA). Forty-nine of these isolates were from different European countries, three from Canada and two from the US (23). Forty canine isolates isolated between 2008 and 2011 were from the Norwegian Veterinary Institute (NVI). The remaining 111 isolates described by Wu *et al.* were obtained and included in this present study (the four *S. delphini* isolates were not included) (22) to investigate if the difference between the data published by Wu *et al.* and those obtained in our previous investigation were explained by differences between isolates from Europe and isolates from North America. The isolates originated
from humans (n=45) and animals (n=66), including dogs, cats, birds and pigs. MLST data were available for 76 of the 78 MRSP isolates from the SVA and NVI collections using the MLST_5 scheme for 52 isolates (SVA) and the MLST_7 scheme for 24 isolates (NVI) (24, 25). A total of 18 different MLST types including world epidemic lineages such as ST68, ST71 and ST258 were represented in the study. While no MLST data were available for the isolates described by Wu and co-workers, repetitive-sequence PCR (rep-PCR) demonstrated the collection was composed of six different rep-PCR clonal lineages (designated A to F) (22). No correlation between rep-PCR clonal type and antimicrobial susceptibility data was encountered, implying results were not due to a specific *S. pseudintermedius* lineage. All isolates were identified in the laboratory at Växjö to the species level with MALDI-TOF MS using the Microflex system with the MALDI Biotyper 3.1 software and MBT 6903 Library (Bruker Daltonics, Bremen, Germany) per the manufacturer’s instructions. *mec* status was determined by the contributing laboratories: SVA (*mecA*) (26) and NVI (*mecA*) (27), or as described in Wu *et al.* (*mecA* and *mecC*) (22). In case of discrepancy between the *mec* status and the phenotypic results obtained in this study, the *mec* status were confirmed by a real-time PCR assay that tested for both *mecA* and *mecC* (28). The study did not require patient consent or ethical approval since isolates were not associated with any identifiable patient information.

Antimicrobial susceptibility testing

Disk diffusion was performed according to EUCAST recommendations (29) using 30 µg cefoxitin and 1 µg oxacillin disks from Oxoid/ThermoFisher Scientific (Basingstoke, UK), Mast Diagnostics (Bootle, UK) and Becton Dickinson (Heidelberg, Germany). All isolates
were tested in parallel from the same inoculum on in-house prepared MHA plates using pre-formulated powder from ThermoFisher Scientific (Oxoid agar) and Becton Dickinson (BBL agar), and commercial plates from Becton Dickinson (BBL agar). *Staphylococcus aureus* ATCC® 29213 was used as quality control.

Data analysis

The ability of cefoxitin (30 µg) and oxacillin (1 µg) disks to predict the presence of *meca*-mediated β-lactam resistance in *S. pseudintermedius* was evaluated by 1) comparing the degree of measurements placed in the interval where both *meca*-negative and *meca*-positive isolates presented values (disregarding the measurements of the aberrant strain, and 2) the number of major Errors (ME) and very major errors (VME) for the present EUCAST breakpoint for cefoxitin (S, ≥35 mm and R, <35 mm) and for oxacillin using the CLSI breakpoint (S, ≥18 mm and R, ≤17 mm) as well as an alternative breakpoint (S, ≥20 mm and R, <20 mm) based on the present study (total isolate set). ME and VME were calculated based on the number of susceptible and the number of resistant tests, respectively.

Analyses on performance were done disregarding the clearly aberrant *meca*-negative isolate (see results) for a) the total aggregated set of measurements:2,007 data points (223 isolates × 3 different disk manufacturers × 3 different MHA), b) for isolates from Europe vs isolates from North America and c) for each of the individual combinations of MHA and disk brands. Comparison of the distributions of zone diameters were performed using the Mann-Whitney U test, p>0.05 were used as significance level
Results

The results for the cefoxitin 30 µg and oxacillin 1 µg disk screening tests are shown in Table 1/Figure 1 and Table 2/Figure 2, respectively. One mecA- (and mecC) negative isolate was clearly aberrant by oxacillin testing with an inhibition zone size between 14-16 mm for oxacillin and 28-29 mm for cefoxitin. This isolate was also clearly resistant in the investigation by Wu et al. (22), the mechanism of resistance for this has not been elucidated. Disregarding this isolate, the inhibition zone sizes of isolates from Europe and North America spanned over similar ranges; i.e., a maximum difference of 2 mm for both cefoxitin and oxacillin except for mecA-positive isolates tested against cefoxitin where isolates from Europe ranged from 6-33 mm versus 21-32 mm for isolates from North America (Tables 1 and 2). Nevertheless, comparison of isolates from Europe and North America for each of the four distributions; cefoxitin mecA-negative, cefoxitin mecA-positive, oxacillin mecA-negative and oxacillin mecA-positive were significantly different (p<0.0001, p<0.01, p<0.002 and, p<0.0001). Measurements from the individual disk and MHA combinations only showed minor differences (i.e., maximum difference in minimum or maximum values of 1-2 mm [Tables 1 and 2]).

For the aggregated dataset for the 30 µg cefoxitin disks, 16% (14.8%-18.0%, 95% CI) of the zone size measurements were in the region (29 -33 mm) where both mecA-negative and mecA-positive isolates tested (Table 1). For the 1 µg oxacillin disks, only 2% (1.6%-2.9%, 95% CI) of the measurements were in the region (19-20 mm) where both mecA-negative and mecA-positive isolates tested (Table 2). Furthermore, the vast majority of the mecA-positive isolates displayed no zone of inhibition with the 1 µg oxacillin disk which provides
much better separation between the mecA-negative and the mecA-positive populations compared to the 30 µg cefoxitin disk (Figure 1 and Figure 2).

For the 1 µg oxacillin disk the number of MEs and VMEs using both the CLSI breakpoint (S, ≥18 mm and R, ≤17 mm) and the breakpoint suggested on the data in this publication (S, ≥20 mm and R,<20 mm) are shown in Table 1 and 2 both for the total dataset as well as for the individual datasets (excluding the aberrant mecA-negative isolate). The CLSI breakpoint resulted in a total of nine mecA-positive isolates (six European and three North American isolates, 40 data points) being reported as susceptible resulting in a VME rate of 4.1%, and one mecA-negative isolate (one North American isolate, 9 data points) would be reported as resistant; i.e., 0.9% ME. In contrast, changing the breakpoint to S, ≥20 mm and R,<20 mm the corresponding VME and ME rates were 0.4% (one European isolate, 4 data points) and 1.1% (2 North American isolates, 11 data points), respectively.

Discussion

Detection of mecA-based methicillin resistance using cefoxitin or oxacillin disks is in fact a dichotomous screening test where the ideal substance has a cutoff that clearly distinguishes between mecA-positive and mecA-negative isolates with no or very little overlap. In this study, where S. pseudintermedius isolates from Europe and North America were tested by using disks from three different manufacturers and MHA from two different manufacturers, oxacillin was markedly better than cefoxitin in separating mecA-negative from-positive isolates. By the 1 µg oxacillin disk, only 2% of the total number of data points were in the interval where zone sizes for mecA-negative and mecA-positive isolates overlapped (it was not possible to classify an isolate as either susceptible or
resistant) in comparison to 16% of the data points for the 30 µg cefoxitin disk diffusion. Thus, our previous finding that cefoxitin disk diffusion can reliably differentiate between mecA-negative and mecA-positive isolates of *S. pseudintermedius* has been modified based upon our current data where a greater variety of strains, disks and media were assayed. Furthermore, the oxacillin disk had the advantage that the majority of mecA-positive isolates did not exhibit any zone of growth inhibition (they grew up to the edge of the disk), permitting good separation of MSSP and MRSP. Our data confirm the recommendation made by Wu *et al.* in favour of using oxacillin disk diffusion for detection of methicillin resistance in *S. pseudintermedius* (22). However, using the breakpoint suggested by Wu *et al.* (the breakpoint adopted by CLSI) nine (8%) of the mecA-positive isolates, would be classified as false susceptible in comparison to one isolate (0.9%) using a breakpoint of S, ≥20 mm and R, <20 mm. In a previous study, Bemis *et al.* also found two PBP2a-positive isolates that displayed zone sizes greater than 17 mm (18 mm and 23 mm) (19), (Bemis personal communication). Interestingly six of the nine isolates were of European origin and none of the three North American isolates were false susceptible in all tested variants, providing a possible explanation for the difference found in this evaluation compared to the evaluation by Wu *et al.* (22). Accordingly, for both cefoxitin and oxacillin the zone size distribution of isolates from Europe were significantly different from the North American isolates possibly reflecting differences in clonal distribution between Europe and North America. The findings in this study stresses the need for testing isolates from different clonotypes and to use disks and media from more manufacturers when setting breakpoints. Thus, for the 1 µg oxacillin disks, we propose that 20 mm is a more appropriate breakpoint to
distinguish between \textit{mec}A-negative (zone diameter \geq20 mm) and \textit{mec}A-positive (zone diameter $<$20 mm) isolates. This new breakpoint should reduce the frequency of VME (resistant isolates that test as susceptible) compared to the current CLSI breakpoint. The breakpoints generated by this study are now accepted by the EUCAST (EUCAST breakpoint table v 7.1, 2017 (30)).

The inclusion of media and disks from different manufacturers which is an integrated part of EUCAST method development is a strength and demonstrates study originality since it incorporates the unavoidable variation in materials between manufacturers. An important limitation of the study is that the strain collection does not include isolates from Africa, Asia, or Australia which potentially could affect the proposed breakpoints. We did not test all isolates for \textit{mec}C, however, isolates resistant for cefoxitin or oxacillin by disk diffusion, but negative for \textit{mec}A were tested for \textit{mec}C. Nevertheless, we cannot exclude that among the phenotypically susceptible isolates there were \textit{mec}C-positive isolates, why our findings only apply for \textit{mec}A-mediated β-lactam resistance (as reflected in the title).

In conclusion, the present investigation confirms the findings from previous studies that oxacillin is better than cefoxitin for detection of \textit{mec}A-mediated β-lactam resistance in \textit{S. pseudintermedius}. As a result of this study, oxacillin is now recommended by CLSI and EUCAST for detecting \textit{mec}A-mediated β-lactam resistance in \textit{S. pseudintermedius}. This outcome contributes to optimize MRSP detection in both veterinary and human diagnostic laboratories and has therefore important implications for antimicrobial treatment in both populations.
Acknowledgement: we thank the “MRSP enthusiasts” consortium from a previous publication (Perreten et al., J Antimicrob Chemother. 2010, 65: 1145-54.) for contributing to the strain collection at SVA.

Funding: this study was performed without external funding.

Conflicts of Interest: Drs. Skov, Varga, Matuschek, Åhman, Bemis, Bengtsson, Sunde, Westblade, Guardabassi and Kahlmeter report nothing to disclose. Dr. Humphries reports employment by Accelerate Diagnostics, Inc. and stocks with Accelerate Diagnostics.
Table 1. Cefoxitin 30 µg disk inhibition zone sizes (mm), Major errors (ME) and Very Major errors (VME) using a breakpoint for S, ≥34 mm and R, <35 mm for *S. pseudintermedius* isolates (n=223*) obtained from Europe and North America for the total number measurements and for individual subgroups.

<table>
<thead>
<tr>
<th>MHA Manufacturer</th>
<th>Disk Manufacturer</th>
<th>Number of measurements</th>
<th>Zone diameter, mm</th>
<th>Interval (mm) with measurements from both mecA-negative and mecA-positive isolates (% of total values)</th>
<th>Number (%) of ME (Breakpoint R<35 mm)</th>
<th>Number (%) of VME (Breakpoint S≥34 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>2007 (223x3x3)</td>
<td>6-33</td>
<td>29-41</td>
<td>29-33 (16.3)**</td>
<td>376 (36.3%)</td>
</tr>
<tr>
<td>Europe</td>
<td>All</td>
<td>972 (108 x3x3)</td>
<td>6-33</td>
<td>31-40</td>
<td>31-33 (6.9%)</td>
<td>68 (18.4%)</td>
</tr>
<tr>
<td>North America</td>
<td>All</td>
<td>1035 (115 x3x3)</td>
<td>14-32</td>
<td>29-41</td>
<td>29-32 (12.2%)</td>
<td>308 (46.2%)</td>
</tr>
<tr>
<td>BBL commercial</td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>10-31</td>
<td>29-40</td>
<td>29-31 (8.0%)</td>
<td>64 (55.7%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>9-32</td>
<td>30-40</td>
<td>30-32 (6.7%)</td>
<td>45 (39.1%)</td>
</tr>
<tr>
<td>BBL prepared in-house</td>
<td>BD</td>
<td>223 (223x1x1)</td>
<td>9-32</td>
<td>31-40</td>
<td>31-32 (6.3%)</td>
<td>34 (29.6%)</td>
</tr>
<tr>
<td></td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>10-32</td>
<td>31-41</td>
<td>31-32 (5.8%)</td>
<td>26 (22.6%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-33</td>
<td>31-41</td>
<td>31-33 (7.1%)</td>
<td>24 (20.9%)</td>
</tr>
<tr>
<td>Oxoid prepared in-house</td>
<td>BD</td>
<td>223 (223x1x1)</td>
<td>6-32</td>
<td>30-40</td>
<td>31-32 (6.3%)</td>
<td>51 (44.3%)</td>
</tr>
<tr>
<td></td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>6-33</td>
<td>30-40</td>
<td>30-33 (14.7%)</td>
<td>41 (35.7%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-33</td>
<td>31-41</td>
<td>31-33 (9.4%)</td>
<td>32 (27.8%)</td>
</tr>
</tbody>
</table>

The aberrant mecA/C-negative strain with cefoxitin readings of 28-29 mm and oxacillin readings of 14-16 mm are omitted.

** Percentage of measurements that overlap between the zone sizes for mecA-negative and mecA-positive isolates. The interval is greater for all media/disks combined than for each individual media as the overlapping zones differ for the individual media/disks.
Table 2. Oxacillin 1 µg disk inhibition zone sizes (mm), Major errors (ME) and Very Major errors (VME) using breakpoint for S, ≥20 mm and R, <20 mm and S, ≥18 mm and R, ≤17 mm for *S. pseudintermedius* isolates (n=223*) obtained from Europe and North America for the total number measurements and for individual subgroups.

<table>
<thead>
<tr>
<th>MH Agar Manufacturer</th>
<th>Disk Manufacturer</th>
<th>Number of measurements</th>
<th>Zone diameter, mm</th>
<th>Interval (mm) with measurements from both mecA-negative and mecA-positive isolates (Pct of total values)</th>
<th>Number (%) of ME (Breakpoint R≤17 mm)</th>
<th>Number (%) VME (Breakpoint S≥18 mm)</th>
<th>Number (%) of ME (Breakpoint R<20 mm)</th>
<th>Number (%) VME (Breakpoint S≥20 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>2007 (223x3x3)</td>
<td>6-20</td>
<td>19-20 (2.2%)**</td>
<td>9 (0.9%)</td>
<td>40 (4.1%)</td>
<td>11 (1.1%)</td>
<td>4 (0.4%)</td>
</tr>
<tr>
<td>Europe</td>
<td>All</td>
<td>972 (108 x3x3)</td>
<td>6-20</td>
<td>20 (0.9%)</td>
<td>0 (0.0%)</td>
<td>32 (4.9%)</td>
<td>0 (0.0%)</td>
<td>4 (0.6%)</td>
</tr>
<tr>
<td>North America</td>
<td>All</td>
<td>1035 (115 x3x3)</td>
<td>6-19</td>
<td>19 (0.2%)</td>
<td>9 (1.4%)</td>
<td>8 (2.4%)</td>
<td>11 (1.7%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>BD</td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>6-19</td>
<td>19 (1.3%)</td>
<td>1 (0.9%)</td>
<td>4 (3.7%)</td>
<td>2 (1.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>20 (1.3%)</td>
<td>1 (0.9%)</td>
<td>3 (2.8%)</td>
<td>2 (1.8%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td>BBL commercial</td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>6-18</td>
<td>-</td>
<td>1 (0.9%)</td>
<td>5 (4.6%)</td>
<td>1 (0.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>20 (1.3%)</td>
<td>1 (0.9%)</td>
<td>4 (3.7%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td>BBL prepared in-house</td>
<td>BD</td>
<td>223 (223x1x1)</td>
<td>6-19</td>
<td>-</td>
<td>1 (0.9%)</td>
<td>5 (4.6%)</td>
<td>1 (0.9%)</td>
<td>0 (0.0%)</td>
</tr>
<tr>
<td></td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>-</td>
<td>1 (0.9%)</td>
<td>6 (5.5%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>-</td>
<td>1 (0.9%)</td>
<td>5 (4.6%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td>Oxoid prepared in-house</td>
<td>BD</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>20 (0.9%)</td>
<td>1 (0.9%)</td>
<td>4 (3.7%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td></td>
<td>Mast</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>20 (1.8%)</td>
<td>1 (0.9%)</td>
<td>5 (4.6%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
<tr>
<td></td>
<td>Oxoid</td>
<td>223 (223x1x1)</td>
<td>6-20</td>
<td>-</td>
<td>1 (0.9%)</td>
<td>5 (4.6%)</td>
<td>1 (0.9%)</td>
<td>1 (0.9%)</td>
</tr>
</tbody>
</table>

*Data for the aberrant *mecA/C*-negative strain with cefoxitin readings of 28-29 mm and oxacillin readings of 14-16 mm are omitted

** Percentage of measurements that overlap between the zone sizes for *mecA*-negative and *mecA*-positive isolates. The interval is greater for all media/disks combined than for each individual media as the overlapping zones differ for the individual media/disks
Figure 1. Cefoxitin 30 µg disk inhibition zone sizes versus mecA status for the 224 S. pseudintermedius isolates from Europe and North America (2,016 data points, each isolate tested using disk and media from three manufacturers [3 × 3 × 224 = 2,016]).
Figure 2. Oxacillin 1 µg disk inhibition zone sizes versus mecA status for 224 S. pseudintermedius isolates obtained from Europe and North America (2,016 data points, each isolate tested using disk and media from three manufacturers [3 × 3 × 224 = 2,016]).
References

Figure 1

No of observations vs Inhibition zone diameter (mm)

- POS
- NEG

mecA