This is the peer-reviewed, manuscript version of an article published in the *Journal of Equine Veterinary Science*. © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

The full details of the published version of the article are as follows:

TITLE: Relationship between saddle and rider kinematics, horse locomotion and thoracolumbar pressures in sound horses
AUTHORS: Mackechnie-Guire, R; Mackechnie-Guire, E; Fisher, M; Mathie, H; Bush, R; Pfau, T; Weller, R
JOURNAL: Journal of Equine Veterinary Science
PUBLISHER: Elsevier
PUBLICATION DATE: 21 June 2018 (online)
DOI: [10.1016/j.jevs.2018.06.003](http://dx.doi.org/10.1016/j.jevs.2018.06.003)
Relationship between saddle and rider kinematics, horse locomotion and thoracolumbar pressures in sound horses

R. Mackechnie-Guire¹,², E. Mackechnie-Guire¹, M. Fisher³, H. Mathie⁴, R. Bush¹, T. Pfau², R. Weller²

¹Centaur Biomechanics, 25 Oaktree Close, Moreton Morrell, Warwickshire, CV35 9BB, UK
²Royal Veterinary College, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
³Woolcroft Saddlery, Mays Lane, Wisbech PE13 5BU, UK
⁴Aegrus Equestrian, Golland Farm, Golland Lane, Burrington, Umberleigh, North Devon, EX37 9JP

Corresponding author:

R. Mackechnie-Guire

Centaur Biomechanics, 25 Oaktree Close, Moreton Morrell, Warwickshire, CV35 9BB, UK

info@centaurbiomechanics.co.uk
Abstract

Reason for performing the study: Saddle fit is considered to be a crucial factor for the health and performance of horses, yet there is a paucity of scientific data. Objective: To determine the relationship between saddle and rider kinematics, horse locomotion and thoracolumbar pressures in sound horses. Method: Seven horses with asymmetric saddle position were tested before and after correction of the saddle positioning asymmetry. Kinematic and kinetic data were collected using motion capture, inertial sensors and a pressure mapping system. Data of horses showing saddle roll to the right were normalised to represent saddle roll to the left. Results: When comparing saddle roll with saddle correction in trot, this study found that once the saddle had been corrected on the rein with saddle roll to the outside (here: right rein) there was an increase in outside front fetlock hyperextension (P=0.02) and inside hind fetlock hyperextension (P≤0.05); there was a reduction in peak pressures after saddle correction under the inside portion of the panel in trot (P≤0.05) and canter (P=0.04), riders showed increased thoracic side bend (lean) on the contralateral side to the direction of saddle roll (P=0.02). Conclusion: The presence of saddle roll creates changes in fetlock hyperextension and hence likely force production, increased peak pressures beneath the panel on the contralateral side to the direction of saddle roll and affects rider position, with the rider leaning in the opposite direction to saddle roll likely in order to optimise balance.

Keywords

horse, locomotion, biomechanics, saddle position, symmetry

1. Introduction

Horse and rider interaction is of interest in improving welfare, longevity and performance in the ridden horse (1-3). Poor saddle fit and positioning is thought to cause back pain in horses leading to behavioural and performance problems (4). There have been considerable advances in equestrian tack; for example scientific studies have informed girth, bridle and more recently saddle design to optimise pressure distribution and improve locomotor performance (5-7), along with thresholds being published representing saddle pressures which could lead to back discomfort (8). However, there is still a paucity of objective, quantitative data on saddle kinematics and its effect on musculoskeletal disorders and performance.
During locomotion, the equine back undergoes three-dimensional translations (dorsoventral, mediolateral craniocaudal) and rotations (axial rotation, lateral bending and flexion/extension, (9, 10) with the saddle being positioned over the mid thoracic region. Given these movements, correct saddle fit for horse and rider is likely to promote unhindered back function and improved stability for the rider, facilitating positive interaction with the horse (11). Defined with respect to the horse: saddle kinematics can include any translational (acceleration, velocity or displacement in dorsoventral, craniocaudal and mediolateral direction) or rotational movement (pitch, roll, yaw) (3). Saddle kinematics have been investigated in sound horses, including the pressures associated with saddle fit and type (12, 13) and the effect of tree and panel widths (1) and pad materials (14-16). Saddle and rider kinematics during each phase of the stride whilst trotting on a treadmill (11) and over ground (17) have been investigated.

A fitted saddle should remain in balance during ridden activity with no overt signs of lateral displacement or craniocaudal movement. However, despite correct fitting, saddles can show signs of lateral displacement alluding to the challenges of saddle fitting. To date there has been no published study in sound horses showing the effect that saddle positioning and asymmetry may have on the locomotion of the horse. A multifactorial approach as to why saddles show lateral displacement is needed, i.e. taking into account laterality, conformation, saddle construction, musculoskeletal asymmetries and rider influence. Although there are a multitude of explanations there is evidence that saddle displacement can be associated with hind limb lameness. A recent study has shown that in 54% of cases with hind limb lameness, saddle slip, (defined as a saddle being laterally displaced consistently to one side), (18) towards the lamer hind limb was observed and after abolishing the lameness through diagnostic analgesia, an improved saddle positioning was observed visually.

In trot, the sum of force over six motion cycles has been quantified to amount to twice the body mass of the rider and in canter two and half times (19). In trot it is assumed that, with a correctly fitting saddle, these forces would be distributed on the horse’s back, however, in cases where there are signs of poor fit and/or lateral saddle positioning (saddle roll), it is likely that this would cause the horse to adjust its loading to withstand the asymmetric forces particularly applied to one side of its back as a result of saddle position (19).

In trot, an asymmetric force distribution through the saddle/stirrups onto the back of the horse, is likely to have an effect on asymmetry of loading between contralateral front and hind limbs, as well as on translational and rotational movements of the thoracolumbosacral region. Changes in thoracolumbosacral kinematics were found after the elimination of lameness, i.e. after elimination of pelvic movement asymmetry (20) and consequently elimination of asymmetrical force production between contralateral limbs. It seems likely that horses might adapt thoracolumbar movement and
fetlock hyperextension (shown to increase with increased vertical force (21)) in the presence of an asymmetrically positioned saddle. Likewise, as a function of an asymmetrically positioned saddle, angular kinematics (carpus and tarsus) may be altered in an attempt to maintain thoracolumbar stability which is likely to be compromised due to these asymmetric forces as a result of saddle position (22).

Canter kinematics are somewhat different, due to the asymmetric nature of the gait, saddle roll is more noticeable especially when circling (15). In gallop, during the stance phase of the lead hind limb, the horse’s trunk displaces laterally away from the leading hind limb. The peak forces in the stirrup have been reported to be higher on the contralateral side to the leading limb, likely in an attempt for the jockey to maintain their centre of mass as close to the midline of the horse, in doing so the jockey pushes against the stirrup on the opposite side to the leading limb (23). Although these findings are in gallop, it seems reasonable to assume that similar mechanics could be applied in canter; saddle rolling away from the leading hind limb, likely affecting thoracolumbar kinematics and creating asymmetric pressures beneath the saddle and consequently affecting rider positioning.

The aim of this study was to investigate the relationship between saddle and rider kinematics, horse locomotion and thoracolumbar saddle pressures in sound horses. The objectives of this study were to determine the effect of an asymmetrically positioned saddle on 1) movement symmetry of the horse in hind and front; 2) pressure distribution under the saddle; 3) rider positioning.

It is hypothesised that on the rein where the saddle position is shifted towards the outside we will observe 1) in trot, increased fetlock hyperextension on the outside front limb along with reduced carpal and tarsal flexion on the inside limbs; 2) in canter, increased outside front limb fetlock and decreased inside hind fetlock hyperextension; 3) an asymmetric distribution in saddle pressures beneath the inside portion of the panel as a result of the saddle being brought up close to the vertebrae; 4) asymmetric rider kinematics particularly with the rider’s seat being displaced to the outside and in order to maintain balance the rider will lean to the inside resulting in an increased lateral thoracic side bend.
2. Materials and Methods

The study was approved by the ethics and welfare committee of the first author’s institution, project number URN 20181785-2.

2.1 Horses

A convenience sample of seven adult sports horses was used in this study. Horses and riders were recruited via Facebook asking for riders to volunteer to participate. Inclusion criteria were saddle “slip” confirmed by Society of Master Saddler Qualified Saddle Fitter (SMSQSF), the horse free from lameness as perceived by the owner, in competitive work and within a 2-hour journey time of the proposed data collection site. The horses were all geldings from a variety of disciplines ($n=4$ dressage, 1 working hunter and 2 eventers). They ranged in height at the withers (1.63-1.80m with a mean ±SD of 1.69±0.07m), body mass (495-590kg with a mean±SD 523±47kg) and age (6-12 years with a mean±SD 9±2.8 years). Horses underwent a veterinary assessment performed by two veterinary surgeons, including flexion tests of all four limbs and no lameness was observed subjectively. The horses’ gait was also assessed quantitatively on a hard surface with a validated sensor based system\(^b\) (4x Xsens MTw,) (24, 25). Data were collected in hand, in trot and data analysed from a total of 40 strides per horse.

Six riders were of an experienced level all competing at (British Dressage) advanced medium or above, (4 female and 2 male (1 female rode two horses)), (mean±SD) height 1.52m ± 0.05, body mass 67±11 kg. Information such as height, fitness, handedness and body mass along with medical information - in particular previous injuries - was obtained by questionnaire. All riders at the time of the study were free from any injuries. Informed consent was obtained and riders could withdraw from the study at any point should they wish to do so.

2.2 Saddles

The horses’ own saddles were used (5 dressage and 2 general purpose,) which had been checked for fit prior to the study. On the day of the study, following the SMS static and dynamic saddle fitting guidelines, each horse and saddle was assessed by four SMSQSF. The static assessment following a published protocol for which each SMSQSF completed the 7 points of saddle fitting and documented their responses, independently from each other using an observation sheet (26).
2.3 Study Protocol

Each horse underwent a warm up period self-prescribed by the rider lasting fifteen minutes; followed by a prescribed rising trot and seated canter protocol lasting eight minutes, during which saddle-horse-rider kinematics were quantified along with saddle-horse kinetics. Horses were tested with their own saddle displaying ‘saddle roll’ first and then data collection was repeated after the saddle had been corrected by a SMSQSF; all corrections were made by the same SMSQSF. Data were collected during straight line locomotion in rising trot left rein, rising trot right rein, canter left lead and canter right lead. All measurements were performed on the same outdoor school on the same surface, which was groomed prior and in between each horse trial in the same way. Three repeats on the left and right rein were collected with ‘saddle roll’ and then saddle corrected. If the horse lost straightness, tripped or made an obvious alteration in gait pattern (e.g. shying) the trial was repeated. Asymmetric saddle positioning was corrected with the use of shims (Prolite) which were positioned underneath the saddle. The shims are designed and contoured to fit beneath the saddle panel. In brief, saddles which rolled were fitted with either a thin shim (5 mm thick) or a thick shim (10 mm thick) underneath the saddle. Saddles which rolled to the left were fitted with a shim under the caudal portion of the left panel and cranial portion of the right panel, saddles which rolled to the right were fitted with a shim under the caudal portion of the right panel and cranial portion of the left panel. A SMSQSF was responsible for determining the thickness of the shims to be used dependent on the degree of observed saddle asymmetry.

2.4 Horse, rider and saddle kinematics

2.4.1 Kinematics - 2-Dimensional Motion Capture

Kinematic data were recorded with a high-speed video camera system, using twenty-four skin markers (30 mm) placed on each horse using double sided tape. Marker locations were identified by manual palpation of anatomical landmarks identifying joint centres and segment ends; once located, white skin paint was used to mark each reference point. Markers were located (1) scapular spine, (2) head of humerus (cranial), (3) lateral condyle of humerus, (4) lateral metacarpal condyles, (5) distal aspect of the metacarpus over the lateral collateral ligament of the metacarpophalangeal joint, (6) origin of the lateral collateral ligament (LCL) of the distal interphalangeal joint, (7) tuber sacrale, (8) greater trochanter of the femur, (9) lateral condyle of the femur, (10) talus, (11) distal aspect of the metatarsus over the lateral collateral ligament of the metatarsophalangeal joint and (12) origin of the lateral collateral ligament (LCL) of the distal interphalangeal joint (Figure 1) on both sides of the horse.
Two high speed cameras (Quintic) were positioned at a ten metre distance from the experiment track, capturing simultaneously left and right sides of the horse at 400 Hz (spatial resolution 1300x400, 400 fps at 10m distance), with a field of view capturing two complete strides in trot and canter. A halogen light was used to illuminate the markers. High speed video data was recorded and downloaded to a laptop (Sony Vaio) and processed using two dimensional motion capture software (Quintic Biomechanics).

This experimental technique has been described previously (5-7). Automatic marker tracking was used to investigate maximum carpal flexion (palmar angle between (3) lateral condyle of humerus, (4) lateral metacarpal condyles and (5) distal aspect of the metacarpus over the lateral collateral ligament of the metacarpophalangeal joint), maximum tarsal flexion (angle between lateral condyle of the femur, (10) talus, and (11) distal aspect of the metatarsus over the lateral collateral ligament of the metatarsophalangeal joint) during the swing phase and maximum fetlock extension during stance for front (palmar angle between (4) lateral metacarpal condyles, (5) distal aspect of the metacarpus over the lateral collateral ligament of the metacarpophalangeal joint and (6) origin of the lateral collateral ligament of the distal interphalangeal joint) and hind limbs (palmar angle between (10) talus, (11) distal aspect of the metatarsus over the lateral collateral ligament of the metatarsophalangeal joint and (12) origin of the lateral collateral ligament of the distal interphalangeal joint) (Figure 1). All raw data were smoothed using a Butterworth low-pass filter with a cut off frequency 10 Hz (27).

2.4.2 Kinematics - Inertial Measurement Units

Horses were instrumented with four MTw inertial measurement units (IMU) (Xsens). These were attached over the sacrum and left and right tuber coxae using custom built pouches and double sided tape and over the poll using a custom made Velcro attachment. Sensor data were collected at 80 Hz per individual sensor channel and transmitted, via proprietary wireless data transmission protocol (Xsens), to a receiver station (Awinda, Xsens) connected to a laptop computer running MTManager (Xsens) software.

IMU data were processed following published protocols (24). In brief, tri-axial sensor acceleration data were rotated into a gravity (z: vertical) and horse-based (x: craniocaudal and y: mediolateral) reference frame and double integrated to displacement. Displacement data were segmented into individual strides based on vertical velocity of the sacrum sensor (28) and median values for the following kinematic variables were calculated over all strides for each exercise condition for both saddle roll and saddle corrected conditions. IMU data is generated using displacement data (deviation from a zero average position) as opposed to positional data based on highpass filtering and double integration from acceleration data (24).

- range of motion: maximum – minimum value over a stride cycle for x, y and z displacement for trot and canter
minimum difference (MinD): difference between the two minima in vertical (z) displacement observed during the two diagonal stance phases in trot (29)

maximum difference (MaxD): difference between the two maxima in vertical (z) displacement observed after the two diagonal stance phases in trot (29)

hip hike difference (HHD): difference between vertical upward movement amplitude of left and right tuber coxae during contra-lateral stance (30).

2.4.3 Kinetic Data – pressure distribution

Kinetic data under the saddle were recorded using a pressure mapping system\(^d\) (Pliance System, Novel, MSA600, sampling rate 50 Hz). The pressure mat consisted of 256 sensors arranged into 8 columns and 16 rows, left and right. The mat was divided into two halves with no sensors over the vertebrae. Prior to measuring, the pad was zeroed without the saddle, girth or rider (31) and was fitted so that the pressure mat was on top of the horse’s skin and beneath the numnah and saddle as previously described (5-7). Peak pressures (kPa) and maximum force (N) in trot and canter for both saddle roll and saddle correction were collected. Data were included from eleven repeated strides, with both the start and end points being determined by maximal protraction of the inside hind limb on both reins. Data were then split into left and right sides denoting the left and right portion (panel) of the saddle.

2.4.4 – Rider Kinematics

Rider kinematics in relation to the horse were quantified by applying 30mm spherical markers positioned on the midline of the cantle, between the two tubera sacrale and caudal aspect of the croup with riders wearing a posture jacket (Visualise), with lines positioned horizontally across the upper scapula and down the spine of the rider; this jacket acted as a body suit so the rider’s anatomical locations could easily be identified. A high speed camera (240 Hz) was positioned on a tripod which remained in the same position caudal to the horse, capturing straight line locomotion in trot and canter on both reins with saddle roll to the outside (right) and saddle roll to the inside (left). With the camera zoom remaining the same from a caudal view, the riders’ trunk and leg position were quantified with saddle roll and after saddle correction. Two angles were measured: 1) the angle between the
Acromion, Greater Trochanter (dorsal) and the lateral Femoral Condyle (ventral) representing the rider’s trunk angle and 2) from the horizontal the angle between the ventral aspect of both the inside and outside stirrup representing the rider’s heel position (figure 2). Data were collected from five consecutive strides when the inside hind limb was maximally protracted on both reins in trot and canter.

2.4.5 - Data normalisation

To make optimal use of the sample of \(n=7 \) horses, all kinetic and kinematic data were ‘normalised’ with respect to the direction of saddle roll. Data of horses with saddle roll to the right \((n=2)\) were combined with data of horses with saddle roll to the left \((n=5)\). This data normalisation process required (1) inverting IMU asymmetry and saddle pressure data for horses with saddle roll to the right and (2) expressing movement conditions and limbs with respect to the side of the saddle roll as inside or outside rather than left or right. As a consequence, ‘rein with saddle roll to the outside’ was used to express the direction of movement for a horse with saddle roll to the left on the right rein (or a horse with saddle roll to the right on the left rein) and ‘rein with saddle roll to the inside’ for a horse with saddle roll to the left on the left rein (or a horse with saddle roll to the right on the right rein). This process effectively assesses the two horses showing saddle roll to the right through a mirror.

2.5 Data Analysis

2.5.1 – Data Collection

From the 2-dimensional kinematic analysis, data were collected from two consecutive strides with three repeats, totalling six strides used for analysis for both trot and canter on both inside/outside rein for each horse for both conditions. Outcome parameters for each condition were: 1) maximum fetlock hyperextension front and hind during stance, 2) maximum carpal flexion, 3) maximum tarsal flexion.

From IMU and pressure distribution, measurements were started/stopped at the same time, data were matched in relation to movement condition and collected from eleven consecutive strides from three repeats, totalling mean±SD 33±3 strides being used for analysis, in trot and canter on both inside/outside rein for each horse, for each condition. Outcome parameters were for the IMU-
craniocaudal, vertical and mediolateral range of motion. 1) inside and outside tuber coxae, 2) sacrum and 3) hip hike difference and differences in movement symmetry between saddle roll and after saddle correction. Pressure distribution: differences in saddle pressures, 1) pressure beneath the inside panel, 2) pressures beneath the outside panel between saddle roll and after saddle correction.

2.6 Statistical Analysis
Statistical analysis was performed in SPSS (vers. 22, IBM, Armonk, USA). Kinetic and kinematic outcome parameters were assessed for normality using histograms which were inspected visually for fit of normal distribution and for presence of outliers. Differences in outcome parameters for saddle roll and saddle correction were assessed using a paired T-test with a significance level set at P≤0.05. A mixed model was used to determine the influence of speed on outcome parameters. For the assessment of saddle fit Fleiss Kappa statistics was calculated to assess agreement between observers averaging the Kappa values over 2 pairs; agreement was categorised values < 0 as indicating no agreement and 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost perfect agreement (26).

3. Results

3.1 Speed
No significant difference was found in any of the outcome parameters when speed was included in the mixed model.

3.2 Horse Inclusion
All horses underwent a full lameness evaluation by two veterinary surgeons. Horses were trotted in hand on a firm level surface; all horses were deemed fit to perform. From the objective measures, horses had mean ± SD asymmetry values HDMin -2.37 ± 2.71, HDMax 0.05 ± 2.85, PDMin -3.11 ± 4.80 and PDMax 2.15 ± 4.82 and HHD 1.27 ± 8.98 (32). (Appendix 1)

3.3 Saddler Observations
Saddle asymmetries were subjectively scored by four SMSQSF in rising trot and canter on both reins for each horse, for each condition. Five saddles displayed left roll and two displayed right roll before correction. There was complete agreement between the four SMSQSF with both the static and dynamic evaluation in respect of saddle fit and direction of saddle roll. Visually, asymmetric positioning (saddle roll) was more noticeable on the rein with saddle roll to the outside, using an SMS subjective scoring system where saddle roll was categorised as 0 = no signs of saddle roll, 1= mild signs of saddle roll, 2 = moderate signs of saddle roll, 4 = severe signs of saddle roll and 5 = extreme signs of saddle roll, saddle position was evaluated on both reins.

On the rein where the saddle had rolled to the outside, saddle roll ranged from 3 to 5, the lateral saddle displacement was more noticeable (trot 3.2±0.55 canter 4.20±0.45) and once corrected the subjective assessment of the displacement of the saddle ranged from 0 to 2 and was significantly ‘improved’ (trot 1.20±0.45, P=0.03, canter 1.40±0.55, P=0.001).

On the rein where the saddle rolled to the inside, visually the saddle asymmetries were less noticeable (trot 1.80±0.45 canter 1.80±0.45) and after saddle correction were unchanged (trot 1.80±0.45 canter 1.70±0.30 P=0.05).

3.4 Relationship between saddle pressure distribution, axial kinematics and limb kinematics - On the rein with saddle roll to the outside

3.4.1 Kinematics - 2-Dimensional Motion Capture

With the rider on the correct diagonal (sitting as the outside forelimb and inside hindlimb were in stance) with saddle roll to the outside, the outside front fetlock hyperextension was reduced compared to the inside front fetlock hyperextension. When the saddle had been corrected there was a significant increase (saddle roll 250.9° ± 7.7°, saddle corrected 252.9° ± 7.4°, P=0.02) in outside front fetlock hyperextension. After the saddle had been corrected, the inside hind fetlock hyperextension increased (saddle roll 242.76° ± 13.1°, saddle corrected 246.76° ± 11.9°, P=0.05). No significant differences (all = P>0.06) were found in canter for any of the 2D kinematic outcome parameters between before and after saddle correction. (Table 1 and 2)

3.4.2. Kinematics - IMU
386 Smaller values were found after saddle correction for craniocaudal range of motion of the outside
tuber coxae (saddle roll 35.4 ± 5.7 mm, saddle corrected 31.2± 4.5 mm P=0.02). In canter no
significant differences were found (all P>0.15). (Table 4a and 4b)

389

390 3.4.3 Kinetic Data – pressure distribution

391 In rising trot, differences in peak pressures were observed between saddle roll and after saddle
correction; after saddle correction a significant reduction in peak pressure beneath the inside portion
of the panel (saddle roll 66.2 ± 10.2 kPa, saddle correction 58.6 ± 11.2 kPa, P≤0.05) was found. In
canter peak pressures were reduced beneath the inside portion of the panel of the saddle (saddle roll
60.8 ± 12.1kPa, saddle correction 56.0 ± 12.8 kPa, P=0.04). (Table 3)

396

397

398 3.4.4 Relationship between saddle and rider kinematics

399 Asymmetric saddle positioning affected rider kinematics significantly; in canter on the rein with
saddle roll to the outside, (for both the inside and outside of the trunk angle between the Acromion,
Greater Trochanter and the lateral Femoral Condyle) the inside trunk angle of the rider was less when
compared to the outside trunk angle (outside 153.27°±7.26°, inside 141.93°±3.36°) (P=0.02). After
saddle correction, the inside trunk angle increased (P=0.01) in effect increasing symmetry between
the inside and outside trunk with no significant difference (P≤0.05) between inside and outside angles
after saddle correction (outside 149.27°±10.68°, inside 148.60°±2.24°). When the saddle rolled to the
outside, measured from the horizontal, the rider’s outside stirrup was significantly (P= 0.02) lower
than their inside stirrup, (saddle roll 6.25°±2.21° saddle correction 1.67°±1.23°).

407

408 3.5 Relationship between saddle pressure distribution, axial kinematics and limb kinematics- On the
rein with saddle roll to the inside

409

410 3.5.1 Kinematics- 2-Dimensional Motion Capture

411 In trot on the rein with saddle roll to the inside; a larger angle was found for the inside maximum
tarsal flexion (saddle roll 116.9° ± 6.5°, saddle corrected 118.5° ± 5.6 °, P≤0.05) after saddle
correction. No significant differences (all P>0.11) were found in trot or canter for any of the
remaining outcome parameters after saddle correction. (Table 1 and 2)
3.5.2 Kinematics - IMU

Larger values were found after saddle correction for mediolateral range of motion (ROM) of the sacrum (saddle roll 42.7 ± 17.6 mm, saddle correction 47.1 ± 18.4 mm, P=0.03) and the outside tuber coxae (saddle roll 40.7 ± 7.9 mm, saddle correction 50.4 ± 11.2 mm, P=0.03) and in a craniocaudal direction for the inside tuber coxae (saddle roll 27 ± 3.4 mm, saddle correction 32.4 ± 3.0 mm, P=0.001). (Table 4a)

In canter, after saddle correction smaller values were found for sacrum ROM (saddle roll 121.4 ± 17.1 mm, saddle correction, 115.2 ± 13.2 mm, P=0.04) and the outside tuber coxae ROM (saddle roll 113 ± 13.0 mm, saddle correction 104.8 ± 13.8 mm, P=0.04) in a craniocaudal direction after saddle correction. (Table 4b)

3.5.3 Kinetic Data – pressure distribution

In canter, after saddle correction, reduced peak pressures were found beneath the outside portion of the panel of the saddle (saddle roll 59.7 ± 7.2 kPa, saddle correction 54.5 ± 5.6 kPa, P=0.02). (Table 3)

3.5.4 Relationship between saddle and rider kinematics

In canter, no significant differences were seen in the rider’s inside trunk angle compared to the outside trunk angle (inside 147.27±6.56°, outside 149.43±2.56°) P=>0.05 before or after saddle correction. No significant differences were found in the rider’s inside/outside stirrup position (saddle roll 1.47±1.31°, saddle correction 1.56±1.21°) before and after saddle correction.

Discussion

The aim of this study was to determine the relationship between saddle kinematics, horse locomotion, saddle pressures and rider kinematics in non-lame horses. Although some differences have been reported here, the authors appreciate that this study is limited in its sample size. As such, in order to make optimal use of the small sample size, data processing methods involved converting data from n=2 horses (showing saddle roll to the right) effectively resulting in saddle roll to the left for n=7 horses. In addition, data analysis categorised data with respect to whether the shift in saddle positioning (saddle roll) occurred to the inside or outside irrespective of the actual direction of roll (to
left or to right). The authors appreciate rider handedness and horse laterality might affect data
normalisation, however, all subjects were right handed. Future studies, with greater sample size,
should look to investigate handedness and laterality and its influence on saddle position.

Given that speed can influence stride characteristics (33), it is possible that any alterations in
locomotion were related to a change in speed (34), however, in this study speed did not affect any of
the outcome parameters between the two conditions (with/without saddle roll). The saddles used in
this study had uniform and symmetrical panels, were wool flocked, free from lumps or cavities and
regularly serviced by a SMSQSF preceding the study and were deemed to fit and be in good working
order by four SMSQSF (26). Therefore, in this study, the presence of saddle roll could not be
explained by incorrectly fitting saddles.

The effect that saddles have on the locomotor system has been previously explored with respect to
pressures associated with saddle fit and type (12, 13, 35) and the effect of tree and panel widths (1)
and pad materials (14-16). However, there is a paucity of quantitative research on the effect that a
saddle (out of balance) has on the locomotion of sound horses. Studies have investigated the
association between hind limb lameness and saddle slip where it was shown after resolution of hind
limb lameness, saddle roll (slip) was eliminated (15, 36). The association of asymmetrical or reduced
range of motion of thoracolumbar kinematics have been investigated where, after the elimination of
lameness, increased range of motion of the thoracolumbar was reported (37), thus likely to help
support the ability for the saddle to remain in balance.

In our preliminary study it was hypothesised that with saddle roll bias to one side there would be
increased front fetlock hyperextension, a sign of increased vertical ground reaction forces (21),
generating greater forces on the side that the saddle and rider weight had rolled to. In contrast to our
hypothesis - in trot on the rein with saddle roll to the outside - a decrease in outside front fetlock
hyperextension and a decrease in inside hind fetlock hyperextension was observed.

In effect, saddle roll to the outside reduced outside front fetlock hyperextension, a pattern observed in
lameness (38) and, once the saddle had been corrected, inside hind limb fetlock hyperextension
increased, a pattern observed with increased loading and higher ground reaction forces. In addition,
the rider’s seat position became more central to the horse and the trunk lean (displayed when saddle
roll was present) was reduced. Changes in thoracolumbar mechanics have been reported with induced
front limb lameness (39) and after elimination of hind limb lameness (37) increased flexion/extension
of the region around the 13th thoracic vertebra and axial rotation of the thoracolumbar region was
measurable. It is speculated that as a function of saddle roll, affecting front and hind (contralateral)
limb fetlock hyperextension and consequently contralateral force production (21), it is likely that
thoracolumbar mechanics would be altered (37, 39). Further work is needed to confirm.
It would be useful to evaluate the maximal flexion for the proximal joints, elbow, shoulder, hip and stifle, as well as evaluating front/hind limb pro/retraction angles and stance durations (40) as these have been evaluated in relation to gait adaptions (41), thus could provide further information on how the horse compensates with an asymmetrically positioned saddle and rider. On the rein with saddle roll to the outside, the maximal flexion of the carpus or tarsal joint was not altered between the two conditions. It was hypothesised that the inside carpal and tarsal joint would have reduced flexion in an attempt to maintain trunk stability by reducing propulsion (22, 42). In contrast to our hypothesis, on the rein with saddle roll to the inside, the inside maximal tarsal flexion was less after correction; it is speculated that an increase in tarsal flexion could be associated with the hock-stifle reciprocal apparatus potentially aiding the flexion of the hip to alter pelvic function in order to flex the back and aid propulsion or indeed a sign of lameness. Further research is needed to confirm these gait alterations in relation to saddle position. Various riding positions and their effect on locomotion have been reported (43). This study only looked at rising trot which could have an effect on saddle position and kinematics, however, it would be expected that if the saddle rolled due to rising trot or the seated position in canter, saddle roll would be seen on both reins and in the current study it was only seen on one rein. Future studies should attempt to look at various riding positions and their influence on saddle position.

The effect the rider has on the horse (3, 44-46) as well as rider experience (1) has been investigated, in respect of saddle position; with saddle roll to the outside the rider’s seat was positioned to the outside (with the saddle) and in a likely attempt to maintain balance, by keeping their centre of mass aligned as closely to the midline of the horse, the rider’s trunk leant to the inside. All riders adjusted their position as a result of saddle position and when corrected they became more central. Further work is needed to determine if the rider induces saddle roll through their own asymmetries or handiness or if their position is a function of saddle position. Interestingly, one rider rode two horses and each horse showed saddle roll in a different direction suggesting, in this case, that saddle roll was as a function of horse and/or horse-saddle and not directly related to the rider. Future studies should look at the influence of rider position on saddle position.

Further support that saddle roll affects locomotion derived from our IMU data; whilst trotting, on the rein with saddle roll to the outside smaller values were found after saddle correction for the outside tuber coxae in a craniocaudal direction. This could be related to the push-off of the contralateral hind limb (here: inside), where it was found that horses who displayed less vertical push off, accommodated by increasing their motion in a craniocaudal direction of the contralateral side (here: outside) (47). Further evidence supporting this derived from our limb kinematics; where inside hind fetlock hyperextension was less before saddle correction indicating less push off. It is speculated, in the current study, the larger values seen on the outside tuber coxae when saddle roll was present could
be an indication that the push off of the inside hind is less, once corrected, values were smaller
indicating more equal push off. Further work, ideally with direct force measurement as described
elsewhere (47) is needed to confirm this association. Thoracolumbar motion has been investigated
with the positioning of IMUs along the back and beneath the saddle (48). This study could glean
further information incorporating these methods in determining changes in thoracolumbar motion
before and after saddle correction however, a lateral displacement of the saddle may influence the
IMU placement and in particular lateral changes in positioning could lead to larger errors (49).
Differences in gallop kinematics (head and pelvis) after the induction of fore and hind limb lameness
have been investigated where no differences between sound and lame conditions were reported (50).
This study found that whilst cantering on the rein with saddle roll to the inside, smaller ROM values
were found for the sacrum and outside tuber coxae. The reason for this is unknown; cautiously
following the principles of trot mechanics, it is speculated that this might be related to increased
propulsion of the inside hind when saddle roll is present. Cautiously speculating, that when the saddle
is corrected the inside hind limb reduces propulsion, given the locomotor differences between trot and
canter, further work is needed to substantiate this theory. This study omitted the poll sensor data due
to the noise as a result of the interaction of the rider with the horse.

Pressure distribution beneath the saddle has been reported (8, 31, 51-53) along with changes in
locomotion as a result of reduced pressures beneath the saddle and girth (5, 7). Thresholds for saddle
pressures associated with back pain have been established (peak pressures of >30 and mean pressures
of >11 (kPa)) (8). It was hypothesised that as a function of saddle roll there would be asymmetric
distribution of pressure beneath the saddle. In support of this, on the rein with saddle roll to the
outside; differences in peak pressures were observed beneath the inside portion of the saddle localised
close to the midline in the region of thirteenth thoracic vertebra, beneath the points of the tree (inside)
and panel (inside) (figure 3). These increased peak pressures were seen in rising trot (<66.2 ± 10.2
kPa) and canter (<60.8 ± 12.1 kPa) (8). In this group of horses, the timings at which the peak
pressures occurred within the stride were consistent. With saddle roll left (right rein), peak pressures
occurred in trot in the cranial portion of the inside panel during the stance phase of the inside
forelimb. These pressures could be as a result of the rider; at this moment the rider is at maximal
height during the rise. Peak pressures only occurred on the rein with saddle roll; on the opposite rein,
when the saddle was straight, a more uniform pressure distribution was seen suggesting that the
pressures seen in the current study were as a function of saddle position as opposed to the rider rising.
This study could be improved further by investigating sitting trot which would help to determine if the
peak pressures observed were as a function of riding position (rising trot) or / and saddle roll. In
canter, peak pressures occurred during the stance phase of the diagonal pair (inside hind limb and
outside forelimb) and leading forelimb, this could be related to the ground reaction forces of the
diagonal pair, rotation of the thorax, thoracolumbar kinematics and influence of the rider (23). The
direct mechanics behind this warrant further investigation. Once saddle position had been corrected with the use of shims, saddle pressures were reduced. It could seem counterintuitive to position a shim under the saddle, with the concern that a ridge of pressure would be created, in this study, saddle roll was reduced when corrected with a shim and no ridges of pressures were seen from the use of the shim.

Conclusion

In a straight line, horses with an asymmetrically positioned saddle significantly altered their locomotion in trot and canter. As previously highlighted, this study is limited by its sample size, however, by using three objective measures, four qualified saddle fitters and data processing, taking into account the side of the saddle roll and using each horse as its own control, an attempt to investigate the relationship between saddle kinematics and horse locomotion has been made. This preliminary study has shown that in these horses, saddle kinematics have a significant effect on equine locomotion; asymmetry in fetlock angles which is likely affecting force production; increased pressures beneath the panel contralateral to the direction of saddle roll; changes in pelvic ROM as a result of saddle position; rider position being compromised by the rider leaning to the opposite side to the direction of saddle roll in order for the rider to align their centre of mass closer to the midline of the horse thus optimising balance. Using a SMSQSF and Prolite shims this study has reported changes in locomotion, saddle pressures and rider kinematics by correction of saddle position in this group of horses. Correct saddle fitting is hence essential to optimize the horse-rider system.

Conflict of Interest Statements

None of the authors on this paper has a financial or personal relationship with other people or organisation that could inappropriately influence or bias the content of this paper.

Acknowledgements

The authors thank the riders: Stephanie Toogood, Henry Boswell, John Wrottesley, Cybil Wasmuth, Katie Green and Jenny Beynon and the practitioners: Jo Beavis, Laura Dempsey, Dr Paul Hurrion, Karen Holden, Emily Sparkes and Jessica Spalding.

Manufacturer’s details

a Martin Collins, Cuckoo Copse, Lambourn Woodlands, Hungerford, Berkshire, RG17 7TJ UK
b Xsens, Enschede, The Netherlands

c Quintic Consultancy, Four Oaks House, 160 Lichfield Rd, Sutton Coldfield, West Midlands, B74

d Novel, Pliance, Ismaninger Str. 51, 81675 München, Germany
References

20. Greve L, Dyson S, Pfau T. Alterations in thoracolumbosacral movement when pain causing lameness has been improved by diagnostic analgesia. Vet J. 2017;224:55-63.

37. Greve L, Dyson S, Pfau T. Alterations in thoracolumbosacral movement when pain causing lameness has been improved by diagnostic analgesia. The Veterinary Journal. 2017.
Table 1
Simultaneous motion capture providing kinematic data collected from six strides from the left and right side during rising trot for both saddle roll and saddle corrected conditions on both left and right reins. All data mirrored to represent saddle roll left.

<table>
<thead>
<tr>
<th></th>
<th>Rein with Saddle Roll to Inside (here: left rein)</th>
<th>Rein with Saddle Corrected</th>
<th>P Value ≤0.05</th>
<th>Asymmetric Saddle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside - Maximal Carpal Flexion (°) (mean±SD)</td>
<td>100.9 ± 5.9</td>
<td>99.5 ± 6.1</td>
<td>0.13</td>
<td>97.3 ± 2.7</td>
</tr>
<tr>
<td>Outside - Maximal Carpal Flexion (°) (mean±SD)</td>
<td>97.2 ± 2.3</td>
<td>96.6 ± 1.9</td>
<td>0.10</td>
<td>100.1 ± 6.9</td>
</tr>
<tr>
<td>Inside- Front Maximum Fetlock Hyperextension (°) (mean±SD)</td>
<td>250.8 ± 7.8</td>
<td>250.2 ± 6.3</td>
<td>0.54</td>
<td>248.8 ± 8.2</td>
</tr>
<tr>
<td>Outside- Front Maximum Fetlock Hyperextension (°) (mean±SD)</td>
<td>253.5 ± 15.0</td>
<td>249.9 ± 9.4</td>
<td>0.37</td>
<td>250.9 ± 7.7</td>
</tr>
<tr>
<td>Inside – Maximal Tarsal Flexion (°) (mean±SD)</td>
<td>116.9 ± 6.5</td>
<td>118.5 ± 5.6</td>
<td>0.05</td>
<td>112.7 ± 14.4</td>
</tr>
<tr>
<td>Outside - Maximal Tarsal Flexion (°) (mean±SD)</td>
<td>117.5 ± 4.3</td>
<td>118.5 ± 4.7</td>
<td>0.13</td>
<td>118.7.5 ± 4.3</td>
</tr>
<tr>
<td>Inside- Hind Maximum Fetlock Hyperextension (°) (mean±SD)</td>
<td>246.3 ± 3.5</td>
<td>247.0 ± 3.7</td>
<td>0.22</td>
<td>242.7 ± 13.1</td>
</tr>
<tr>
<td>Outside - Hind Maximum Fetlock Hyperextension (°) (mean±SD)</td>
<td>241.5 ± 11.0</td>
<td>241 ± 14.3</td>
<td>0.95</td>
<td>246.5± 4.5</td>
</tr>
</tbody>
</table>
Simultaneous motion capture providing kinematic data collected for the left and right side during canter for both saddle roll and saddle corrected conditions on both left and right reins. All data mirrored to represent saddle roll left.

<table>
<thead>
<tr>
<th>Rein with Saddle Roll to Inside (here: left rein)</th>
<th>Rein with Saddle Roll to Outside (here: right rein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymmetric Saddle</td>
<td>Saddle Corrected</td>
</tr>
<tr>
<td>Inside - Maximal Carpal Flexion (*) (mean±SD)</td>
<td>109.8 ± 5.3</td>
</tr>
<tr>
<td>Outside - Maximal Carpal Flexion (*) (mean±SD)</td>
<td>110.6 ± 4.3</td>
</tr>
<tr>
<td>Inside- Front Maximum Fetlock Hyperextension (*) (mean±SD)</td>
<td>249.7 ± 9.4</td>
</tr>
<tr>
<td>Outside- Front Maximum Fetlock Hyperextension (*) (mean±SD)</td>
<td>247.1 ± 6.6</td>
</tr>
<tr>
<td>Inside – Maximal Tarsal Flexion (*) (mean±SD)</td>
<td>129.6 ± 4.0</td>
</tr>
<tr>
<td>Outside - Maximal Tarsal Flexion (*) (mean±SD)</td>
<td>127.9 ± 4.4</td>
</tr>
<tr>
<td>Inside- Hind Maximum Fetlock Hyperextension (*) (mean±SD)</td>
<td>244.1 ± 3.4</td>
</tr>
<tr>
<td>Outside - Hind Maximum Fetlock Hyperextension (*) (mean±SD)</td>
<td>119.4 ± 11.6</td>
</tr>
</tbody>
</table>
Table 3

Saddle pressure distribution data collected from thirty-three strides from beneath the saddle during trot and canter for both saddle roll and saddle corrected conditions on both left and right reins. All data mirrored to represent saddle roll left and split into left and right saddle panels.

<table>
<thead>
<tr>
<th></th>
<th>Rein with Saddle Roll to Inside (here: left rein)</th>
<th>Rein with Saddle Roll to Outside (here: right rein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymmetric Saddle</td>
<td>Saddle Corrected</td>
</tr>
<tr>
<td>Peak pressures beneath the left panel (kPa) (mean±SD)</td>
<td>Trot</td>
<td>61.1 ± 10.6</td>
</tr>
<tr>
<td>Peak pressures beneath the right panel (kPa) (mean±SD)</td>
<td>Trot</td>
<td>58.2 ± 4.7</td>
</tr>
<tr>
<td>Peak pressures beneath the left panel (kPa) (mean±SD)</td>
<td>Canter</td>
<td>59.6 ± 5.5</td>
</tr>
<tr>
<td>Peak pressures beneath the right panel (kPa) (mean±SD)</td>
<td>Canter</td>
<td>59.7 ± 7.2</td>
</tr>
</tbody>
</table>
Table 4a

Kinematic data during trot on the left and right rein with saddle roll left and after saddle correction, (ROMY=range of motion in mediolateral direction, ROMX = range of motion craniocaudal direction, ROMZ = range of motion in vertical direction, MinD = difference between the two minima in vertical displacement).

<table>
<thead>
<tr>
<th></th>
<th>Rein with Saddle Roll to Inside (here: left rein)</th>
<th>Rein with Saddle Roll to Outside (here: right rein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymmetric Saddle</td>
<td>Saddle Corrected</td>
</tr>
<tr>
<td>Sacrum ROMY (mean±SD)</td>
<td>42.7 ± 17.6</td>
<td>47.1 ± 18.4</td>
</tr>
<tr>
<td>LTC ROMX (mean±SD)</td>
<td>27 ± 3.4</td>
<td>32.4 ± 3.0</td>
</tr>
<tr>
<td>LTC Romy (mean±SD)</td>
<td>35 ± 10.0</td>
<td>38.4 ± 11.3</td>
</tr>
<tr>
<td>LTC ROMZ (mean±SD)</td>
<td>125.4 ± 19.6</td>
<td>126.8 ± 18.4</td>
</tr>
<tr>
<td>RTC ROMX (mean±SD)</td>
<td>31.4 ± 6.3</td>
<td>35.7 ± 6.2</td>
</tr>
<tr>
<td>RTC ROMY (mean±SD)</td>
<td>40.7 ± 7.9</td>
<td>50.4 ± 11.2</td>
</tr>
<tr>
<td>RTC ROMZ (mean±SD)</td>
<td>121.8 ± 18.4</td>
<td>121.2 ± 17.0</td>
</tr>
<tr>
<td>LTC MinD (mean±SD)</td>
<td>5.1 ± 25.0</td>
<td>7.1 ± 24.4</td>
</tr>
<tr>
<td>RTC MinD (mean±SD)</td>
<td>0.4 ± 21.8</td>
<td>2.3 ± 21.6</td>
</tr>
</tbody>
</table>
Table 4b

Horse ROM values during canter on the left and right rein with saddle roll and after saddle correction,

\(ROMX = \text{range of motion craniocaudal direction, TCD = difference between vertical movement amplitude of left and right tuber coxae). \)

<table>
<thead>
<tr>
<th></th>
<th>Rein with Saddle Roll to Inside (here: left rein)</th>
<th>Rein with Saddle Roll to Outside (here: right rein)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymmetric Saddle</td>
<td>Saddle Corrected</td>
</tr>
<tr>
<td>Sacrum ROMX (mean±SD)</td>
<td>121.4 ± 17.1</td>
<td>115.2 ± 13.2</td>
</tr>
<tr>
<td>RTC ROMX (mean±SD)</td>
<td>113 ± 13.0</td>
<td>104.8 ± 13.8</td>
</tr>
<tr>
<td>TCD (mean±SD)</td>
<td>32.2 ± 32.8</td>
<td>19.8 ± 28.2</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1

Markers were located over the (1) scapular spine, (2) head of humerus (cranial), (3) lateral condyle of humerus, (4) lateral metacarpal condyles, (5) distal aspect of the metacarpus over the lateral collateral ligament of the metacarpophalangeal joint and (6) origin of the lateral collateral ligament (LCL) of the distal interphalangeal joint, (7) tuber sacrale, (8) greater trochanter of the femur, (9) lateral condyle of the femur, (10) talus, (11) distal aspect of the metatarsus over the lateral collateral ligament of the metatarsophalangeal joint and (12) origin of the lateral collateral ligament (LCL) of the distal interphalangeal joint (Figure 1) on both sides of the horse along with a pressure mat (Pliance™) beneath the saddle and inertial measuring units positioned over the sacrum, left and right tuber coxae and the poll using custom made pouches.

Figure 2

(A) showing the rider position with saddle roll (here: right) with 30mm spherical markers positioned on the midline of the cantle (3), between the two tubera sacrale (2) and caudal aspect of the croup (1) with riders wearing a posture jacket (Visualise), with lines positioned horizontally across the upper scapula and down the spine of the rider. (B) showing the same rider, same horse after saddle correction. Two angles were measured: 1) the angle between the Acromion, Greater Trochanter (dorsal) and the lateral Femoral Condyle (ventral) representing the rider’s trunk angle and 2) from the horizontal the angle between the ventral aspect of both the inside and outside stirrup representing the rider’s heel position (figure 2).

Figure 3

Pressure distribution beneath the saddle whilst cantering on the rein with saddle slip to the outside (here: left). (A) showing pressure distribution beneath a saddle which has rolled to the left, increased pressures to the right of the midline. (B) showing pressure distribution beneath the saddle after saddle correction.

Appendix 1

Asymmetry values for the seven horses whilst trotting in hand on a firm surface. HD_{max} and PD_{max}, the difference between the two peaks (maxima) of the vertical movement of the poll (HD_{max}) and tubera sacrale (PD_{max}). HD_{min} and PD_{min} the difference between the two troughs (minima) of the vertical movement of the poll (HD_{min}) and tubera sacrale (PD_{min}). Hip Hike Difference (HHD), defined as the difference in upward movement of each tuber coxae during contralateral hind limb stance.
<table>
<thead>
<tr>
<th>Subject</th>
<th>$H_{\text{D}_{\text{min}}}$ mm</th>
<th>$H_{\text{D}_{\text{max}}}$ mm</th>
<th>$P_{\text{D}_{\text{min}}}$ mm</th>
<th>$P_{\text{D}_{\text{max}}}$ mm</th>
<th>HHD mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.50</td>
<td>-0.32</td>
<td>-6.34</td>
<td>2.32</td>
<td>-4.47</td>
</tr>
<tr>
<td>2</td>
<td>-7.58</td>
<td>-2.56</td>
<td>-7.34</td>
<td>7.00</td>
<td>11.56</td>
</tr>
<tr>
<td>3</td>
<td>-2.29</td>
<td>4.18</td>
<td>-3.44</td>
<td>-6.00</td>
<td>-10.81</td>
</tr>
<tr>
<td>4</td>
<td>0.22</td>
<td>3.67</td>
<td>-4.89</td>
<td>-3.00</td>
<td>11.63</td>
</tr>
<tr>
<td>5</td>
<td>-1.00</td>
<td>-0.49</td>
<td>5.67</td>
<td>5.36</td>
<td>8.00</td>
</tr>
<tr>
<td>6</td>
<td>-0.27</td>
<td>-1.00</td>
<td>-6.52</td>
<td>4.57</td>
<td>-2.67</td>
</tr>
<tr>
<td>7</td>
<td>-4.14</td>
<td>-3.13</td>
<td>1.11</td>
<td>4.78</td>
<td>-4.33</td>
</tr>
<tr>
<td>Mean</td>
<td>-2.37</td>
<td>0.05</td>
<td>-3.11</td>
<td>2.15</td>
<td>1.27</td>
</tr>
<tr>
<td>SD</td>
<td>2.71</td>
<td>2.85</td>
<td>4.80</td>
<td>4.82</td>
<td>8.98</td>
</tr>
</tbody>
</table>
Highlights

1. Correct saddle fit is essential in optimising horse-saddle-rider interaction.
2. In trot, saddle roll effects front and hind limb fetlock hyperextension.
3. Saddle roll creates increase pressures beneath the panel contralateral to direction of roll.
4. Saddle roll effects rider positioning and likely interaction with the horse.
5. Saddle roll occurs on one rein more than the other.
The study was approved by the ethics and welfare committee of the first author’s institution.
Conflict of Interest Statements

None of the authors on this paper has a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of this paper.