This author’s accepted manuscript may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

The full details of the published version of the article are as follows:

TITLE: Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size

AUTHORS: Monika Böhm, Rhiannon Williams, Huw R. Bramhall, Kirsten M. McMillan, Ana D. Davidson, Andrés Garcia, Lucie M. Bland, Jon Bielby, Ben Collen

JOURNAL TITLE: Global Ecology and Biogeography

PUBLISHER: Wiley

PUBLICATION DATE: April 2016

DOI: 10.1111/geb.12419
Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size

Monika Böhm1*, Rhiannon Williams1,2, Huw R. Bramhall1,3, Kirsten M. McMillan1,4, Ana Davidson5,6,7, Andrés Garcia-Aguayo8, Lucie M. Bland9, Jon Bielby1 & Ben Collen2

Affiliations
1 – Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, United Kingdom.
2 – Centre for Biodiversity & Environment Research, University College London, Gower Street, London WC1E 6BT, United Kingdom.
3 – Royal Veterinary College, 4 Royal College Street, London NW1 0TU, United Kingdom.
4 – Genetics and Ecology of Amphibian Research Group, Laurentian University, Sudbury, Ontario P3E 2C6, Canada.
5 – Department of Ecology and Evolution, Stony Brook University, New York 11794, USA.
6 – NatureServe, Arlington, VA 22203, USA.
7 – Institute for Wildlife Studies, Arcata, CA 95521, USA.
8 – Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México. C. P. 48980, Mexico.
9 – ARC Centre of Excellence for Environmental Decisions, School of BioSciences, The University of Melbourne, Victoria 3010, Australia.

* corresponding author: monika.bohm@ioz.ac.uk; +44(0) 207 449 6676

Keywords
decline; phylogeny; lizard; snake; prediction; extinction risk; reptile

Short running title: Extinction risk correlates in squamate reptiles

No. words in abstract: 299
No. words in main body of text (incl. biosketch): 4,966
No. references: 55
Abstract

Aim
Evaluating the relative roles of biological traits and environmental factors that predispose species to an elevated risk of extinction is of fundamental importance to macroecology. Identifying species that possess extinction promoting traits allows targeted conservation action before precipitous declines occur. Such analyses have been carried out for several vertebrate groups with the notable exception of reptiles. We identify traits correlating with high extinction risk in squamate reptiles, assess whether those differ with geography, taxonomy and threats, and make recommendations for future Red List assessments.

Location
Global.

Methods
We collected data on biological traits and environmental factors of a representative sample of 1,139 species of squamate reptiles. We used phylogenetically controlled regression models to identify: general correlates of extinction risk; threat-specific correlates of risk; and realm-specific correlates of risk. We also assessed the relative importance of range size versus other factors through multiplicative bivariate models, partial regressions and variance partitioning.

Results
Range size was the most important predictor of extinction risk, reflecting the high frequency of reptiles assessed under range-based IUCN criteria. Habitat specialists occupying accessible ranges were at a greater risk of extinction: although these factors never contributed more than 10% to the variance in extinction risk, they showed significant interactions with range size. Predictive power of our global models ranged between 23 and 29%. The general overall pattern remained the same among geographic, taxonomic and threat-specific data subsets.

Main conclusions
Proactive conservation requires shortcuts to identify species at high risk of extinction. Regardless of location, squamate reptiles that are range-restricted habitat specialists living in areas highly accessible to humans are likely to become extinct first. Prioritising species that exhibit such traits could forestall extinction. Integration of data sources on human pressures,
such as accessibility of species ranges, may aid robust and time-efficient assessments of species’ extinction risk.

INTRODUCTION

To combat decline in biodiversity and prioritize conservation action, there is an urgent need to identify species at risk of extinction. Identifying key correlates of risk and evaluating how they vary across time, species and space is a central goal of conservation research, having focussed on all vertebrate groups (e.g. Olden et al., 2007; Sodhi et al., 2008; Davidson et al., 2009; Lee & Jetz, 2011), with the exception of reptiles. What makes one species more prone to extinction than another is likely to vary depending on biological traits and environmental factors. Habitat specialization, large body size and small geographical range frequently correlate with increased extinction risk (Owens & Bennett, 2000; Cardillo et al., 2006). Higher annual precipitation, higher minimum elevation and increased human population density can predict the susceptibility of species to extinction (Cardillo et al., 2004; Davies et al., 2006; Luck, 2007; Tingley et al., 2013). Such analyses can help identify high-risk species and regions, thus establishing conservation priorities (Murray et al., 2014).

Certain traits may render species vulnerable to some threat processes but not others (Murray et al., 2014). Ignoring the identity and severity of threats acting on a species may lead to relatively low explanatory power of models in correlative studies of extinction risk (Isaac & Cowlishaw, 2004; Murray et al., 2014). Bird species with high extinction risk caused by overexploitation and invasive species had long generation times and large body sizes, whilst extinction risk in species threatened by habitat loss was associated with habitat specialization and small body sizes (Owens & Bennett, 2000).

Correlates of extinction risk may also vary across space. For example, the importance of traits can vary among geographical scales: human population density is a significant predictor of risk at a global scale, but is less consistent within geographical realms (Davies et al., 2006). It has been suggested that both regional and global analyses are required to contribute to a better understanding of extinction risk patterns and their drivers (Davies et al., 2006; Fritz et al., 2009).

Reptiles have been neglected in global conservation prioritization due to the relative paucity of data on their extinction risk. Some smaller-scale, regional studies have identified correlates of heightened extinction risk in squamate reptiles (lizards, snakes and amphisbaenids), such as small geographic range (Tingley et al., 2013), ambush foraging and
lack of male-male combat (Reed & Shine, 2002), and large body size, habitat specialization and high annual precipitation (Tingley et al., 2013). However, a global analysis of extinction risk correlates had so far not been possible due to a lack of consolidated data on reptile extinction risk, distribution and life history. Recently, a global assessment of extinction risk in a representative sample of 1,500 reptile species established that one-fifth of reptiles are threatened with extinction, with proportion of threat highest in freshwater environments, tropical regions and on oceanic islands (Böhm et al., 2013).

However, a global analysis of extinction risk correlates had so far not been possible due to a lack of consolidated data on reptile extinction risk, distribution and life history. Recently, a global assessment of extinction risk in a representative sample of 1,500 reptile species established that one-fifth of reptiles are threatened with extinction, with proportion of threat highest in freshwater environments, tropical regions and on oceanic islands (Böhm et al., 2013).

Given the lack of population data for squamates, their extinction risk is primarily based on restricted geographical range; for example, 82% of squamates were assessed under IUCN Red List Criterion B (restricted geographic range) and 13% under Criterion D2 (very restricted population) (Böhm et al., 2013). This introduces circularity into correlative studies, since geographic range size is likely to have the strongest effect on extinction risk. Previous studies have dealt with this issue by producing an analysis of species not classified under the two range-based criteria (e.g. Purvis et al., 2000; Cardillo et al., 2004). However, given the lack of population and trend data for squamates, and thus the lack of extinction risk assessments under population decline criteria, assessments of extinction risk correlates greatly rely on establishing the significance of contributing factors in relation to range size.

Here, we build on this sampled assessment of reptile extinction risk to conduct the first global phylogenetic comparative study of squamate extinction risk. We first identify biological traits and environmental factors that correlate with elevated extinction risk. We hypothesize that, in addition to a negative effect of range size: 1) biological traits such as large body size and increased habitat specialisation are positively correlated with high extinction risk; 2) environmental factors relating to increased human influence positively correlate with extinction risk (Table 1). We conduct further analyses on the effects of threat type, taxonomy and geography on extinction risk, and investigate the explanatory power of extinction risk correlates relative to range size. We find range-restricted habitat specialists in areas highly accessible to humans at a higher extinction risk, with practical implications for the Red List assessment process and reptile conservation.

METHODS

Data

We obtained extinction risk data from a representative sample of 1,500 randomly selected reptile species (Böhm et al., 2013). We included all 1,139 non-Data Deficient squamate species in our analyses [i.e. excluding species too data poor to allow an estimate of extinction
risk, an approach followed by previous authors (e.g. Purvis et al., 2000; Cardillo et al., 2004). Since Data Deficient (DD) species are likely to have traits which make their detection difficult (e.g. small body/ range size, habitat specialism; Bland, 2014; Vilela et al., 2014), excluding DD species may bias our parameters towards the opposite end of the spectrum, i.e. larger-bodied habitat generalists in more expansive ranges. However, because of existing data gaps, it is beyond the scope of this paper to address issues of data deficiency.

IUCN Red List category (IUCN, 2001) provided our response variable of extinction risk, a five-point scale from lowest (Least Concern = 1) to highest extinction risk (Critically Endangered = 5) (e.g. Cardillo et al., 2004). No species were classified as Extinct or Extinct in the Wild.

Geographic range size (km2) was calculated from freely available distribution maps produced as part of the IUCN Red List assessment process (Böhm et al., 2013). The following biological traits were chosen as additional predictor variables based on hypotheses derived from the literature (Table 1): degree of habitat specialisation (calculated as number of habitat types a species occupies), body size/mass [maximum snout-vent-length (SVL, in mm)], number of offspring per year, reproductive mode (viviparous, oviparous) and diet (omnivore, herbivore, carnivore). Data were collected via literature searches, museum specimens and input from species experts (Supplementary Materials). IUCN Red List assessments record the habitats occupied by each species using a classification scheme of 103 habitat types, which we combined into 15 broader habitat categories (Supplementary Materials). From this, we calculated number of habitats occupied by each species.

We tested the following environmental predictor variables, based on hypotheses derived from the literature (Table 1): annual precipitation (in mm), annual temperature (˚C), minimum elevation (Hijmans et al., 2005), and Net Primary Productivity (NPP; grams/m2/year; Imhoff et al., 2004). We also tested the following aggregate measures of the level of human influence within a species range: human appropriation of NPP (HANPP, measured as % of NPP; Imhoff et al., 2004), mean human population density (HPD, measured as people per km2; CIESIN, 2005a), accessibility (measured as travel time to city with more than 50,000 people; Nelson, 2008), and mean human footprint (Human Influence Index, normalised per region and biome; CIESIN, 2005b). All extrinsic predictor variables were extracted using ArcGIS 9.3, as the mean value across each species’ range. We also divided threat types recorded as part of the Red List assessments into five categories (Salafsky et al., 2008): habitat loss or disturbance, overexploitation, invasive species introductions, climate change and pollution (Supplementary Material). We included threat
type, biogeographic realm and taxonomy (lizards, snakes) as additional variables in our analyses.

Reptile phylogeny

We primarily relied on the dated phylogeny from Pyron et al. (2013), which contained 666 of the species in our dataset (hereafter referred to as ‘dated phylogeny’). From this, we built a composite non-dated phylogeny (hereafter referred to as ‘non-dated phylogeny’) including all 1,139 species in our dataset, using Phylowidget (Jordan & Piel, 2008). We set all branch lengths in our non-dated phylogeny to unity. Most of the relationships between genera and families within our non-dated phylogeny were derived from the molecular phylogeny by Pyron et al. (2013) and revised using a more recent phylogeny on the origin of viviparity (Pyron & Burbrik, 2014).

Literature searches on phylogenetic relationships were carried out for species not included in Pyron et al. (2013). Polytomies were assumed where relationships could not be resolved. Studies based on morphological evidence were used only if phylogenies based on molecular methods were unavailable. The final tree had 1,005 nodes and included a species of *Sphenodon* as an out-group. The higher-level relationships were: (1) Dibamidae and Gekkonidae near the base of the tree, (2) Scincoidea (*Scincidae, Cordylidae, Gerrhosauridae, Xantusiidae*) as a sister group to all other squamates (except Dibamidae and Gekkonidae), (3) Lacertoidea (*Lacertidae, Amphisbaenidae, Teiidae, Gymnophthalmidae*) as a sister group to Toxifera (*Anguimorpha, Iguanidae, Serpents*). Lower-level relationships are detailed in the Supplementary Materials.

Statistical analysis

Statistical analyses were carried out in R version 3.1.2 (R Core Team, 2014). Variables were log-transformed to achieve normality. Phylogenetic relationships between species may violate assumptions about independence of character traits, so that trait-based models of extinction risk need to control for shared ancestry (Freckleton et al., 2002). We followed Revell (2010) and simultaneously estimated phylogenetic signal (Pagel’s λ, using maximum likelihood) and regression model, an approach which has been shown to outperform equivalent non-phylogenetic approaches. We implemented this using phylogenetic generalized linear models (pGLS) in the R package ‘caper’ (Orme et al., 2012).

To overcome circularity in our data introduced by range size, we ran a number of analyses, summarised in Figure 1A. We first ran a univariate pGLS of all predictors on
extinction risk, confirming that range size was the most significant predictor of risk (dated phylogeny: $t = -16.2$, d.f. = 664, $r^2 = 0.28$, p<0.001; non-dated phylogeny: $t = -25.0$, d.f. = 1,136, $r^2 = 0.35$, p<0.001). Next, we conducted bivariate additive pGLS of each explanatory variable in turn on extinction risk, including range size as the second variable to control for its effect. Finally, we carried out stepwise multiple regressions, in which variables that caused the most significant increase in explanatory power of the model were added one at a time to produce minimum adequate models (MAMs). To test whether spatial effects remained within our model, possibly contributing to variation within the data, we checked our model residuals for spatial autocorrelation using Moran’s I in the package ‘spdep’ (Bivand et al., 2015) by defining spatial location of each residual as the range mid-point of the corresponding species.

To disentangle the influence of range size on extinction risk in MAMs, we carried out three additional analyses (Figure 1B). First, we reconstructed MAMs of extinction risk excluding range size, to compare model performance and determine most significant predictors in the absence of our range size metric. Second, we performed partial regressions of extinction risk using two sets of explanatory variables: range size, and all other significant explanatory variables remaining in the MAMs. The resulting variance partitioning (Legendre & Legendre, 1998) for each MAM shows the shared variance between range size and other explanatory variables, as well as independent contributions of range size and other explanatory variables to extinction risk. Variance partitioning was run in the R package ‘vegan’ (Oksanen et al., 2015). Third, for each variable remaining in the MAM, we tested for interactions with range size using multiplicative bivariate pGLS to check whether the relationship between each significant variable changed with range size (i.e. whether once a species is range-restricted, additional factors increase in importance to decide whether a range-restricted species is threatened or not).

Finally, to investigate the predictive ability of our global MAM, we re-ran our analysis on a calibration data set consisting of the world minus one biogeographical realm (e.g. creating a calibration data set containing all but Afrotropical species, a second calibration data set containing all but Australasian species, etc.). Using these calibration data sets, we then used the global MAM (minus the realm) to predict the outcome for the remaining biogeographical realm. We diagnosed predictive performance of the MAM versus observed values using four metrics: mean squared error of prediction ($\text{MSEp} = \Sigma((O – P)^2/N)$), bias (mean of the difference between observed and predicted extinction risk squared), percentage bias ($\%\text{bias} = 100 \times \text{bias}/\text{MSEp}$) and percentage error of prediction.
(\%error = 100*\sqrt{MSE_p}/mean_{EX}, where mean_{EX} is the average extinction risk in the predicted dataset).

We conducted further pGLS on subsets of data, based on biogeographical realm, taxonomy and threats, to assess the robustness of trends detected in the complete dataset (Figure 1A). For biogeographical realms, we created six subsets, containing species solely present in one of six realms (following Olson et al., 2001): Afrotropical, Australasian, Indomalayan, Nearctic, Neotropical and Palearctic. We excluded the Oceanian realm from the analysis as only seven species in our sample were from that region. We analysed two taxonomic groups separately: lizards (702 species) and snakes (423 species). We split the data into three threat categories: species affected by habitat loss alone (405 species), species affected by habitat loss and overexploitation (56 species), and species affected by habitat loss and invasive species (49 species). Threats of invasive species and overexploitation were considered in conjunction with habitat loss, because too few species were affected by invasive species or overexploitation alone to allow for meaningful statistical analysis. We conducted bivariate pGLS accounting for range size and MAMs separately for each data subset, as well as variance partitioning as described above.

All analyses were run using both the dated and non-dated phylogeny to assess whether the results obtained from the two phylogenies were sufficiently similar. Where multiple hypotheses were tested simultaneously, i.e. in MAMs, we corrected for possible inflation of Type I errors using Bonferroni corrections of p values.

Species trait mapping
To investigate the spatial distribution of risk-promoting traits, we used an assemblage-based approach (Olalla-Tarraga et al., 2006) to produce global distribution maps for variables significantly correlated with extinction risk. For each trait, we overlaid a hexagonal grid onto the stacked species’ distributions and calculated for each grid cell the average trait value for species present in the cell. The grid used was defined on an icosahedral, projected to the sphere using the inverse Icosahedral Snyder Equal Area (ISEA) projection to account for the Earth’s spherical nature. Each grid cell was approximately 23,000 km². We conducted the analysis using Hawth’s Tools for ArcGIS 9.3 (Beyer, 2004).

RESULTS
Because results are broadly similar between analyses, here we only report results using the non-dated phylogeny (to maximise sample size), primarily focusing on MAMs as these
models best account for shared content among variables. All other results are reported in the Supplementary Materials.

Global correlates of squamate extinction risk

The MAM accounted for 39% of the total variance (Table 2), suggesting that species were at a greater risk of extinction if they were habitat specialists ($t = -4.5$, d.f. = 951, p<0.001), had large maximum SVLs ($t = 2.2$, d.f. = 951, p<0.05) and occupied more accessible range areas ($t = -3.8$, d.f. = 951, p<0.001). Maximum SVL was no longer significant after Bonferroni correction, and model residuals remained significantly spatially auto-correlated ($I = 7.2$, p < 0.001).

Effect of range size

When excluding range size from MAM construction, accessibility and number of habitats remained the most significant effects in addition to body size, with NPP also contributing (Table S13). The model only explained 14.6% of variation in the data compared to 39% explained by the full MAM.

Range size was the largest contributing factor to extinction risk in reptiles (Figure 2). Range size (c in Figure 2) contributed between 24 and 47% of variation in extinction risk to our models. Additional variables within MAMs (a in Figure 2) never contributed more than 10% independently to extinction risk, and had the greatest contribution of nearly 10% in the Nearctic model (accessibility is the sole explanatory variable). The combined contribution (b in Figure 2) of range size and other explanatory variables varied between models, and was particularly large for the Australasian MAM. Unexplained variance was largest in nearly all models, with the exception of the Australasian realm model, where range size (c), combined variables (b), and unexplained variation (d) contributed to nearly equal parts.

Range size interacted significantly with all other factors, with the most significant interactions with accessibility, number of habitats, and number of threats (Table 4). Accessibility lost its negative effect slowly as range size increased (i.e. closer proximity to population centres causes higher extinction risk at smaller range sizes). Similarly, habitat specialism was negatively related with extinction risk when range size was very small (species occupying fewer habitats have higher extinction risk), though again this effect diminished as range area increased. Interestingly, at low NPP, range area had a positive effect on extinction risk though this effect diminished as NPP increased, suggesting a complex interplay between NPP and range area.
Predictive ability of global models

Mean square error of prediction ranged from 0.11 to 0.18, bias from <0.001 to 0.003 and percentage bias from 0.02 to 1.55 for our MAM. Percentage error of prediction was broadly similar across realms, ranging between 23% and 29% (Figure 3). Prediction error was highest for the Indomalayan realm and lowest for the Australasian realm.

Taxonomic, geographic and threat variation in correlates of extinction risk

Geographical realm

Habitat specialism significantly correlated with high extinction risk in the Afrotropics and Neotropics, while accessibility was an important factor in the Afrotropics, Australasia and the Nearctic (Table 3). Explanatory power of MAMs varied greatly between biogeographical realms, from 70% of variation explained in the Australasian realm to 29% in both Nearctic and Palearctic realms. Threat type was significant in the Indomalayan and Australasian MAMs, with overharvesting increasing extinction risk in both realms, and invasive species increasing extinction risk in the Australasian realm. In the Afrotropical realm, snakes had a higher extinction risk than lizards. The Palearctic MAM only contained range size as a predictor. Geographical subsetting of the data helped to remove spatial autocorrelation in some of the subsets (Australasia: Moran $I = -0.6$, p = 0.72; Indomalayan: Moran $I = 1.3$, p = 0.10; Nearctic: Moran $I = 0.01$, p = 0.50; Palearctic: Moran $I = 0.7$, p = 0.23), but not all (Afrotropical: Moran $I = 4.0$, p<0.001; Neotropical: Moran $I = 6.0$, p<0.001).

Habitat specialism and accessibility were overall the most significant predictors of extinction risk across analyses. Habitat specialism within our sample appears to be primarily confined to South America, as well as arid regions of Asia and the Middle East and Southeast Asian islands (Figure 4A). Species with easily accessible range areas were distributed more evenly across the globe, specifically in North America (where accessibility was a significant factor), though vast areas of the Amazon basin and deserts remain poorly accessible to humans (Figure 4B).

Taxonomic subsets

The MAM for lizards accounted for 41% of the total variance. Lizards were at a greater risk of extinction if they were habitat specialists ($t = -5.4$, d.f. = 653, p<0.001), had accessible range areas ($t = -4.1$, d.f. = 653, p<0.001) and large maximum SVLs ($t = 2.4$, d.f. = 653, p<0.05) (Table 3). There was no significant MAM for snakes.
Threat type

Number of habitat types ($t = -4.5$, d.f. = 360, $p<0.001$), maximum SVL ($t = 3.3$, d.f. = 360, $p<0.001$) and accessibility ($t = -3.5$, d.f. = 360, $p<0.001$) were significant factors in the MAM for species affected by habitat loss, which accounted for 51% of the total variance (Table 3). For species threatened by habitat loss with additional threats of overexploitation or invasive species, none of the traits were significant.

DISCUSSION

Despite being one of the largest vertebrate species groups (10,038 species described to date; Uetz & Hošek, 2015), knowledge of the factors predisposing certain reptile species to high extinction risk lags behind other species groups (Böh m et al., 2013). Understanding how biological traits and environmental factors interact with threats may help predict extinction risk of species and fill knowledge gaps. Our study suggests squamate reptiles with small range size, habitat specialism and ranges that are accessible to humans are at high risk of extinction.

IUCN Red List assessments and the importance of range size

A species’ range size is important in shaping its potential extinction risk: restricted-range species are generally at a higher risk of extinction, and this is reflected in two of the five IUCN Criteria to assess the extinction risk of species (criteria B and D2; IUCN, 2001). Since little is known about the population status of most of the world’s reptiles, range-based criteria are predominantly used to estimate reptile extinction risk (Böh m et al., 2013). Our finding that most of the variation in extinction risk is explained by range size is therefore a reflection of the Red List assessment process. However, relationships between a species’ abundance and distribution have been found to vary in strength across systems and at different spatial scales (Gaston et al., 2000).

Small range size alone is insufficient to class a species as threatened, so that range-based IUCN criteria incorporate additional symptoms of threat (criterion B: severe fragmentation, occurrence in only few locations, continuing decline in population size/habitat/range or extreme fluctuations; criterion D2: presence of a plausible future threat) (Mace et al., 2008). Factors influencing extinction risk in addition to range size may explain why one range-restricted species is at a higher risk of extinction than another. In this study, accessibility and habitat specialism specifically were found to have an increased effect on
extinction risk towards smaller range sizes, and may help inform extinction risk assessments and models in future.

Biological traits: habitat specialization and body size

Habitat specialists were consistently at a higher risk of extinction. This relationship between habitat specialism and extinction risk has previously been observed in birds (Owens & Bennett, 2000), mammals (Gonzalez-Suarez et al., 2013) and New Zealand lizards (Tingley et al., 2013). Habitat specialists are likely to be at higher risk of extinction as they are less able to adapt to habitat changes or persist outside of their preferred habitat type (Reed & Shine, 2002) and due to the synergistic effects of narrow niche and small range size (Slater et al., 2013).

Larger species also had a higher risk of extinction, corroborating similar findings in mammals (Cardillo et al., 2006), birds (Owens & Bennett, 2000), and New Zealand lizards (Tingley et al., 2013). Large body size correlates with traits related to slow life histories (e.g. low reproductive rates, late maturity in mammals; Bielby et al., 2007), and low population densities and large home ranges, all of which have been shown to increase the risk of extinction (e.g., Davidson et al., 2009). That few of the fecundity-related factors had any effects on extinction risk may relate to the fact that the vast majority of species were assessed under range-based criteria, rather than the more demography-related decline criteria of the IUCN.

Environmental factors: accessibility of species ranges to humans

Accessibility of species range to humans was the best and most consistent environmental predictor of extinction risk. Species with ranges that are more accessible to humans have a greater risk of extinction because these regions are more likely to be affected by anthropogenic threats, such as habitat loss and exploitation. Alternatively, measures of accessibility may be negatively correlated with extinction risk, because higher accessibility may have already caused species susceptible to anthropogenic threats to become extinct. Because IUCN Red List assessments are likely to lag behind species declines, due to difficulties documenting declines in a timely fashion, this latter relationship is unlikely to be observed in our dataset. Instead, information on range accessibility may aid the assessment process by providing information on a number of the subconditions contained within criteria B and D2, namely the presence of continuing declines through anthropogenic pressures.
It has been argued that inclusion of measures of human pressure would improve Red List assessments. Our results suggest that species experts may already incorporate some impression of human pressure into the assessment process, albeit in an unquantified manner. Accessibility, here estimated as travel time to cities of more than 50,000 people, appears to be a preferred measure to gauge human pressure on reptile species, while human population density performed overall worse. Accessibility also outperformed human population density to characterize human pressures on the distribution of terrestrial vertebrates (Torres-Romero & Olalla-Tárraga, 2015). Explicitly incorporating quantitative data on human pressure into the IUCN Red List assessments process is likely to improve our judgement of the exposure of species to threats and hence better categorise their extinction risk, specifically given that the effect of human pressure becomes more important at smaller range sizes. Such data could be based on variables that are likely to co-vary with threats (e.g., distance to roads), directly measure habitat change for species threatened by habitat loss (e.g., deforestation; Hansen et al., 2013), or measure changes in ecosystem condition (e.g., IUCN Red List of Ecosystems; Rodriguez et al., 2015).

Threat-specific correlates and spatial pattern of extinction risk

Recent studies have highlighted the impact of threat types on the relationship between species traits and extinction risk (Gonzalez-Suarez et al., 2013). Failing to take into account threat type may lead to relatively low explanatory power of models in correlative studies of extinction risk (Cardillo et al., 2008; Murray et al., 2014).

In mammals, high extinction risk in species threatened by processes directly affecting survival (e.g., overexploitation) was associated with large body sizes and small litters, whilst high risk in species threatened by habitat-modifying processes was associated with habitat specialization (Gonzalez-Suarez et al., 2013). In our study, habitat specialization was significantly correlated with extinction risk in species threatened by habitat loss, although body size and accessibility of species range were also significant. The addition of other threats (overhunting, invasive species) did not yield any significant correlates of extinction risk. The high frequency of habitat loss compared to other threats within our sample overwhelmed the results, making it difficult to provide any insights into threat-specific extinction risk correlates.

Because threats are not evenly distributed across space [e.g. habitat loss/exploitation in reptiles, Böhm et al. (2013); forest loss, Hansen et al. (2013)], where a species occurs geographically may be as relevant to determining extinction risk as its specific biological
traits. Although we found that extinction risk correlates for squamates varied among biogeographical realms, the same two traits were consistently correlated with extinction risk. Habitat specialists were at higher risk of extinction throughout the tropics, a pattern consistent with other studies (e.g., butterflies; Steffan-Dewenter & Tscharntke, 2000) and attributed to the prevalence of anthropogenic habitat loss in tropical regions (Devictor et al., 2008). Most of our models retained significant spatial autocorrelation suggesting that unexplained variation in our data may stem from underlying spatial processes.

Improving extinction risk assessments

With Red Listing of species often using qualitative rather than quantitative data on threats, discerning the cause of species declines presents a complicated task, with assessors likely to list the most pervasive or obvious threats. Identifying causal factors of species declines is fraud with difficulties and requires greater research attention in order to elicit the most appropriate conservation response. With increased research attention on species-independent threat mapping, future assessments of extinction risk may rely on objective and readily available data sources on threats affecting our natural world [e.g., forest loss (Hansen et al., 2013), climate change (IPCC, 2013), human encroachment via human footprint (CIESIN, 2005a, b) etc.].

While our results suggest a complex relationship between extinction-promoting factors, geographic location and threat processes, we have highlighted certain factors which act as correlates of extinction risk in addition to range size. Consolidating this information into extinction risk assessments and future modelling processes is paramount in order to make predictions of species status. Specifically, the additional factors highlighted in this study may help in the prediction of whether range-restricted species (and thus potential candidates for assessment under criteria B and D2) may ultimately be classed as threatened.

Conclusions

Comparative studies can contribute to conservation prioritization by identifying species that possess extinction-promoting traits. Areas of relatively intact habitat are likely to be degraded in the near future, through increased accessibility and demand for natural resources. It is in these areas that currently non-threatened species may become threatened with extinction. Our global analysis of extinction risk in squamates revealed that biological (habitat specialism) and environmental factors (accessibility of species range to humans) are key to predicting high extinction risk in species assessed under range-based extinction risk criteria.
While it has been suggested that small-scale analyses may be more useful than global analyses for conservation (Fritz et al., 2009), the general overall pattern remained the same among geographic, taxonomic and threat-specific data subsets. Predictive models of extinction risk have been proposed as a cost-effective solution for prioritising and steering conservation compared to the current, often lengthy, assessment process (Bland et al. 2015).

There is a need for increased volume and accessibility of data on threats (particularly spatial data), which can inform extinction risk analyses and identify species at risk. This is particularly important for species groups such as reptiles for which adequate population information is traditionally lacking, and which greatly rely on knowledge of their distribution and the threats within their ranges. Additionally, we need to test quantitative approaches for predicting extinction risk on a wider number of squamate species, including Data Deficient species, in order to complement current efforts aimed at producing extinction risk assessments for the world’s reptiles.

Acknowledgements

MB receives a grant from the Rufford Foundation. ADD was partially supported by NSF grant DEB-1136586. BC acknowledges the support of a Leverhulme Trust Research Project Grant.

References

Supporting Information

Additional supporting information may be found in the online version of this article at the publisher’s web-site. The data and composite phylogeny used in these analyses will be archived in the Dryad digital repository.

Appendix S1. Species data

Appendix S2. Building the composite reptile phylogeny

Appendix S3. Additional results and discussion of extinction risk correlates

Appendix S4. Additional references in Supplementary Materials

Table S1. Species trait data included in the models of extinction risk

Table S2. Habitat and threat classification used by the IUCN

Table S3. Results from univariate phylogenetic generalized linear models of the effect of trait variables on extinction risk

Table S4. Significant correlations from bivariate phylogenetic generalized linear model of extinction risk, taking range size into account

Table S5. Results from bivariate phylogenetic generalized linear model of extinction risk for lizards and snakes

Table S6. Results from bivariate phylogenetic generalized linear model of extinction risk for species affected by habitat loss only

Table S7. Results from bivariate phylogenetic generalized linear model of extinction risk in six different geographical realms

Table S8. Minimum adequate models explaining extinction risk in squamates using the dated phylogeny

Table S9. Diagnostics of predictive performance of global minimum adequate model predicted versus observed values (dated phylogeny)

Table S10. Diagnostics of predictive performance of global minimum adequate model predicted versus observed values (dated phylogeny)

Table S11. Full model output for all six holdout models to test minimum adequate model of extinction risk using the non-dated phylogeny

Table S12. Full model output for all six holdout models to test minimum adequate model of extinction risk using the dated phylogeny

Table S13. Bivariate phylogenetic generalized linear model of extinction risk, including interactions with range size

Table S14. Minimum adequate models of extinction risk in squamates excluding range size
Biosketch

The researchers involved in this analysis (the Indicators and Assessments Unit at the Zoological Society of London (http://www.zsl.org/indicators) and their collaborators at University College London, Stony Brook University, Universidad Nacional Autónoma de México and The University of Melbourne) share their interest in understanding global change in biodiversity using extinction risk analyses, monitoring of global population trends and ecosystem-level studies.
Tables.

Table 1. Hypotheses on the relationship between intrinsic and extrinsic factors, and extinction risk. Intrinsic factors are likely to interact with specific threats.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Variables in analysis</th>
<th>Prediction</th>
<th>Justification</th>
<th>Interaction with threats</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geographical range size</td>
<td>Range size (km²)</td>
<td>-</td>
<td>Small ranges contain smaller populations/are more easily affected by a single threat process across the entire range</td>
<td>Habitat loss</td>
<td>(Purvis et al., 2000; Cardillo et al., 2008)</td>
</tr>
<tr>
<td>Island endemism</td>
<td>Categorical: Island- or mainland-dwelling</td>
<td>+</td>
<td>Island endemics have smaller ranges & populations</td>
<td>Invasive species</td>
<td>(Purvis et al., 2000)</td>
</tr>
<tr>
<td>Habitat specialism</td>
<td>Number of habitats occupied</td>
<td>-</td>
<td>Habitat specialists are at higher risk of extinction</td>
<td>Habitat loss</td>
<td>(Owens & Bennett, 2000; Gonzalez-Suarez et al., 2013)</td>
</tr>
<tr>
<td>Body size</td>
<td>Maximum snout-vent length (SVL)</td>
<td>+</td>
<td>Large bodied species have small population densities, slow life histories and large home ranges</td>
<td>Overexploitation, invasive species</td>
<td>(Owens & Bennett, 2000; Cardillo et al., 2008; Gonzalez-Suarez et al., 2013; Tingley et al., 2013)</td>
</tr>
<tr>
<td>Reproductive rate</td>
<td>Number of offspring/year</td>
<td>-</td>
<td>Species with slow reproductive rates are less able to compensate for high mortality rates</td>
<td>Overexploitation, invasive species</td>
<td>(Gonzalez-Suarez et al., 2013)</td>
</tr>
<tr>
<td>Reproductive mode (viviparity)</td>
<td>Categorical: Viviparous vs oviparous</td>
<td>+</td>
<td>Viviparous species tend to be larger than oviparous species</td>
<td>Overexploitation, invasive species</td>
<td>(Durnham et al., 1988)</td>
</tr>
<tr>
<td>Diet (trophic level)</td>
<td>Categorical: Omnivore, herbivore, carnivore</td>
<td>+</td>
<td>Higher trophic levels (carnivores) more vulnerable to disturbance</td>
<td></td>
<td>(Crooks & Soule, 1999)</td>
</tr>
<tr>
<td>Factor</td>
<td>Variables in analysis</td>
<td>Prediction</td>
<td>Justification</td>
<td>Interaction with threats</td>
<td>References</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>---</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Extrinsic factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precipitation</td>
<td>Annual average precipitation</td>
<td>+</td>
<td>Areas experiencing high levels of precipitation have higher productivity & potentially higher human disturbance</td>
<td>(Tingley et al., 2013)</td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Annual average temperature</td>
<td>-</td>
<td>Reptiles are solar ectotherms, with slower life histories (hence reproduction) in areas of lower temperatures</td>
<td>(Scharf et al., 2015)</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Minimum elevation (in m)</td>
<td>+</td>
<td>High minimum elevations suggest smaller, more restricted ranges</td>
<td>(Davies et al., 2006)</td>
<td></td>
</tr>
<tr>
<td>Productivity</td>
<td>Net primary productivity (NPP)</td>
<td>+</td>
<td>Higher productivity suggests potentially higher human disturbance and impact</td>
<td>(Luck, 2007)</td>
<td></td>
</tr>
<tr>
<td>Human impact</td>
<td>1. Human appropriation of net primary productivity (HANPP)</td>
<td>+</td>
<td>Higher human disturbance and impact, higher levels of resource use and increased pressure on productive habitats, opening up of habitats to exploitation of natural resources</td>
<td>(Cardillo et al., 2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Human population density (HPD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Human footprint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Accessibility (distance from road)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Minimally adequate models explaining extinction risk in squamates using the non-dated phylogeny. No.: number of; SVL: snout-vent length; λ: Pagel’s lambda. Uncorrected (p) and Bonferroni adjusted (p corr) p values are shown.

<table>
<thead>
<tr>
<th>Non-dated phylogeny</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>p corr</th>
<th>Model r^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.618</td>
<td>0.109</td>
<td>14.9</td>
<td><0.001</td>
<td>0.391</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>Range size</td>
<td>-0.098</td>
<td>0.005</td>
<td>-19.5</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.060</td>
<td>0.016</td>
<td>-3.8</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>No. habitats</td>
<td>-0.110</td>
<td>0.025</td>
<td>-4.4</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Maximum SVL</td>
<td>0.028</td>
<td>0.013</td>
<td>2.2</td>
<td>0.026</td>
<td>0.105</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Minimally adequate models explaining extinction risk in squamates using subsets of the data based on A) biogeographic realm, B) taxonomy, C) threat type. Note that predictors of extinction risk vary among biogeographic realms, and between lizards and snakes. No.: number of; SVL: snout-vent length; λ: Pagel’s lambda. Non-dated phylogeny only.

A) Biogeographic realm

<table>
<thead>
<tr>
<th>Biogeographic Realm</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r²</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afrotropical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>2.699</td>
<td>0.273</td>
<td>9.9</td>
<td><0.001</td>
<td>0.533</td>
<td>0.040</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.125</td>
<td>0.011</td>
<td>-11.5</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.386</td>
<td>0.103</td>
<td>-3.7</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. habitats</td>
<td>-0.130</td>
<td>0.055</td>
<td>-2.4</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxonomy: snake</td>
<td>0.145</td>
<td>0.064</td>
<td>2.3</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australasian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>2.572</td>
<td>0.328</td>
<td>7.8</td>
<td><0.001</td>
<td>0.703</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.117</td>
<td>0.014</td>
<td>-8.3</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.288</td>
<td>0.132</td>
<td>-2.2</td>
<td>0.032</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threat type: overharvest</td>
<td>0.083</td>
<td>0.155</td>
<td>0.5</td>
<td>0.596</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasives</td>
<td>0.231</td>
<td>0.099</td>
<td>2.3</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indomalayan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.894</td>
<td>0.193</td>
<td>9.8</td>
<td><0.001</td>
<td>0.432</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.140</td>
<td>0.017</td>
<td>-8.5</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threat type: overharvest</td>
<td>0.202</td>
<td>0.113</td>
<td>1.8</td>
<td>0.077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasives</td>
<td>-0.328</td>
<td>0.176</td>
<td>-1.9</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nearctic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.186</td>
<td>0.880</td>
<td>3.6</td>
<td><0.001</td>
<td>0.292</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.099</td>
<td>0.026</td>
<td>-3.9</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.764</td>
<td>0.321</td>
<td>-2.4</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neotropical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.378</td>
<td>0.077</td>
<td>17.9</td>
<td><0.001</td>
<td>0.386</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.099</td>
<td>0.007</td>
<td>-14.1</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
No. habitats -0.106 0.045 -2.3 0.020

<table>
<thead>
<tr>
<th>Palearctic</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r²</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.107</td>
<td>0.169</td>
<td>6.6</td>
<td><0.001</td>
<td>0.288</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.081</td>
<td>0.014</td>
<td>-5.9</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B) Taxonomy

<table>
<thead>
<tr>
<th>Lizards</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r²</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.652</td>
<td>0.167</td>
<td>9.9</td>
<td><0.001</td>
<td>0.411</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.103</td>
<td>0.006</td>
<td>-16.5</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.082</td>
<td>0.020</td>
<td>-4.1</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. habitats</td>
<td>-0.168</td>
<td>0.031</td>
<td>-5.4</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum SVL</td>
<td>0.071</td>
<td>0.030</td>
<td>2.3</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Snakes</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r²</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.904</td>
<td>0.196</td>
<td>4.6</td>
<td><0.001</td>
<td>0.372</td>
<td>0.012</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.091</td>
<td>0.007</td>
<td>-13.7</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum SVL</td>
<td>0.059</td>
<td>0.032</td>
<td>1.8</td>
<td>0.066</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C) Threat type

<table>
<thead>
<tr>
<th>Habitat loss</th>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r²</th>
<th>(\lambda)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.031</td>
<td>0.180</td>
<td>11.3</td>
<td><0.001</td>
<td>0.506</td>
<td>0.000</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.128</td>
<td>0.009</td>
<td>-14.7</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. habitats</td>
<td>-0.196</td>
<td>0.043</td>
<td>-4.5</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum SVL</td>
<td>0.074</td>
<td>0.022</td>
<td>3.3</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.096</td>
<td>0.027</td>
<td>-3.5</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Bivariate phylogenetic generalized linear model of extinction risk, including interactions of predictors with geographical range size. Here we show results of the three most significant variables: accessibility, number of habitat types and net primary productivity (NPP) (for all results, see Supplementary Materials). λ: Pagel’s lambda. Non-dated phylogeny only.

Accessibility

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.430</td>
<td>0.290</td>
<td>11.8</td>
<td><0.001</td>
<td>0.396</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.269</td>
<td>0.026</td>
<td>-10.2</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td>-0.344</td>
<td>0.048</td>
<td>-7.2</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Range size * accessibility</td>
<td>0.028</td>
<td>0.004</td>
<td>6.4</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Number of habitats

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1.730</td>
<td>0.062</td>
<td>27.9</td>
<td><0.001</td>
<td>0.412</td>
</tr>
<tr>
<td>Range size</td>
<td>-0.130</td>
<td>0.006</td>
<td>-22.5</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>No. habitats</td>
<td>-0.835</td>
<td>0.085</td>
<td>-9.9</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Range size * no. habitats</td>
<td>0.065</td>
<td>0.007</td>
<td>9.1</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

NPP

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>S.E.</th>
<th>t</th>
<th>p</th>
<th>Model r^2</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-6.410</td>
<td>1.419</td>
<td>-4.5</td>
<td><0.001</td>
<td>0.316</td>
</tr>
<tr>
<td>Range size</td>
<td>0.464</td>
<td>0.121</td>
<td>3.8</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>NPP</td>
<td>0.291</td>
<td>0.053</td>
<td>5.4</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Range size * NPP</td>
<td>-0.021</td>
<td>0.005</td>
<td>-4.6</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Explanation of analyses carried out to (A) build predictive models of extinction risk in reptiles and (B) evaluate the importance of range size versus other explanatory variables (biological traits and environmental factors). We followed this schematic to carry out our analyses using both the non-dated and dated phylogeny.

Figure 2. Variance partitioning for all minimum adequate models (MAM) of extinction risk (global, and by geographical, taxonomic and threat type subsets), showing the different contributions of variables retained as significant within the respective MAM, as well as their shared contribution, to extinction risk: a) combined independent contribution of all variables retained in MAM excluding range size (solid line); b) shared contribution of all MAM variables including range size (thick dashed line); c) independent contribution of range size only (thin dashed line); d) unexplained (residual) variance in the model (dotted line). The variables for each figure were selected based on the outcomes of the MAMs using the non-dated phylogeny only (see Tables 2 and 3). Biogeographical subsets: AFR – Afrotropical; AUS – Australasian; IND – Indomalayan; NE – Nearctic; NEO – Neotropical.

Figure 3. Observed versus predicted log Red List status derived from holdout models (the global model containing all species minus those from the stated biogeographical realm) predicting Red List status for the remaining (held out) biogeographical realm: A – Afrotopical (%error of prediction = 23.6); B – Australasian (%error = 23.6); C – Indomalayan (%error = 29.0); D – Nearctic (%error = 27.6); E – Neotropical (%error = 25.7); F – Palearctic (%error = 27.1). Full diagnostics for each model are given in the Supplementary Materials (Table S9).

Figure 4. Global distribution maps for significant species traits in our analyses: (A) The number of habitats occupied (as a measure of habitat specialism); (B) accessibility of species’ geographical ranges (travel time in minutes of land-based travel to cities of more than 50,000 people). Grid cell values are the average weighted mean for trait values, for species’ ranges intersecting the grid cell.
Figure 1.

A

H1. Biological traits, environmental factors and range size each have a significant effect on extinction risk

H2. Biological traits and environmental factors retain their significant effect (H1) when controlling for range size

H3. Biological traits and environmental factors significant in H2 retain their significant effect when multiple variables are included (contributing to best predictive model of extinction risk (MAM))

H4. There is no spatial autocorrelation in model residuals obtained in H3

H5. Our best predictive model of extinction risk (MAM) predicts extinction risk in subsets of the data

Univariate pGLS:
ER ~ Explanatory variable

Bivariate pGLS:
ER ~ Explanatory variable + Range size

Step-wise multiple pGLS:
ER ~ Explanatory variable1 + Explanatory variable2 + ... + Range size

Subsets:
taxonomic biogeographic realm threat

biogeographical realm only

Calibration: world minus one realm
Prediction: remaining realm

Multivariate pGLS

B

H5. In the absence of range size, the same biological traits and environmental factors as in H3 contribute to best predictive model of extinction risk (MAM)

Step-wise multiple pGLS:
ER ~ Explanatory variable1 + Explanatory variable2 + ...

Variance partitioning:
Range size vs additional variables vs (range size & additional variables) vs residual variance
Also on data subsets

Bivariate pGLS:
ER ~ Explanatory variable * Range size
Figure 2.
Figure 3.
Figure 4.

A

Mean number of habitats (habitat specialism)

B

Travel time to city of ≥50,000 people (accessibility)