Corpus luteum-endometrium-embryo interactions in the dairy cow: Underlying mechanisms and clinical relevance

Robinson, R S and Hammond, A J and Wathes, D C and Hunter, M G and Mann, G E (2008) Corpus luteum-endometrium-embryo interactions in the dairy cow: Underlying mechanisms and clinical relevance. In: UNSPECIFIED.

Full text not available from this repository.

Abstract

Conception rates of dairy cows are currently declining at an estimated 1% every year. Approximately, 35% of embryos fail to prevent luteolysis during the first three weeks of gestation. Interactions between the corpus luteum, endometrium and embryo are critical to the successful establishment of pregnancy and inadequacies will result in the mortality of the embryo. For example, as little as a one day delay in the post-ovulatory rise of progesterone has serious consequences for embryo development and survival. Recently, we found that LH support, degree of vascularization and luteal cell steroidogenic capacity were not the major factors responsible for this luteal inadequacy, but are nevertheless essential for luteal development and function. Progesterone acting on its receptor in the endometrium stimulates the production of endometrial secretions on which the free-living embryo is dependent. However, their exact composition and effects of inadequate progesterone remains to be determined. The embryo is recognized through its secretion of interferon tau (IFNT), which suppresses luteolytic pulses of prostaglandin F-2 alpha. In the cow, it is most likely that IFNT inhibits oxytocin receptor up-regulation directly and does not require the prior inhibition of oestrogen receptor alpha (ESR1). Unravelling the precise luteal-endometrium and embryo interactions is essential for us to understand pregnancy establishment and development of strategies to reverse the declining fertility of dairy cows.