This is an Accepted Manuscript of an article published by Taylor & Francis in *Avian Pathology* on 29 April June 2015, available online: http://www.tandfonline.com/doi/full/10.1080/03079457.2015.1042427.

The full details of the published version of the article are as follows:

TITLE: Outbreak of encephalitic listeriosis in red-legged partridges (*Alectoris rufa*)

AUTHORS: Jeckel, S and Wood, A and Grant, K and Amur, C and King, SA and Whatmore, AM and Koylass, M and Anjum, M and James, J and Welchman, D De B

JOURNAL TITLE: Avian Pathology

VOLUME/EDITION: 44/4

PUBLISHER: Taylor & Francis

PUBLICATION DATE: 29 April 2015 (online)

DOI: 10.1080/03079457.2015.1042427
Outbreak of encephalitic listeriosis in red-legged partridges (*Alectoris rufa*)

S. Jeckel¹*, A. Wood², K. Grant³, C. Amur³, S.A. King⁴, A. M. Whatmore⁵, M. Koylass⁵, M. Anjum⁵, J. James⁶, D. de B. Welchman⁴

¹ Royal Veterinary College- Animal Health and Veterinary Laboratory Agency, Hawkshead Lane, North Mymms, AL9 7TA, UK; ² AHVLA Lasswade, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ; ³ Public Health England, Gastrointestinal Bacteria Reference Unit, 61 Colindale Avenue, London, NW9 5EQ; ⁴ AHVLA Winchester, Itchen Abbas, SO21 1BX; ⁵ AHVLA Weybridge, Department of Bacteriology, New Haw, Addlestone, KT15 3NB; ⁶ Larkmead Veterinary Group, Ilges Lane, Cholsey, Oxon, OX10 9PA

Running title: encephalitic listeriosis red-legged partridges

Contact details corresponding author:

Tel.: +44 1707 666630

Fax: +44 1707 666640

E-mail: sjeckel@rvc.ac.uk

This work was supported by the Defra Emerging Diseases and Welfare programme under project ED 1300.
Abstract

An outbreak of neurological disease was investigated in red-legged partridges between 8 and 28 days of age. Clinical signs included torticollis, head tilt and incoordination and over an initial 8 day period approximately 30-40 fatalities occurred per day. No significant gross post mortem findings were detected.

Histopathological examination of the brain and bacterial cultures followed by partial sequencing confirmed a diagnosis of encephalitis due to *Listeria monocytogenes*. Further isolates were obtained from follow-up carcasses, environmental samples and pooled tissue samples of newly imported day-old chicks prior to placement on farm. These isolates had the same antibiotic resistance pattern as the isolate of the initial post mortem submission and belonged to the same fluorescent amplified fragment length polymorphism (fAFLP) subtype. This suggested that the isolates were very closely related or identical and that the pathogen had entered the farm with the imported day-old chicks, resulting in disease manifestation in partridges between 8 and 28 days of age. Reports of outbreaks of encephalitic listeriosis in avian species are rare and this is to the best of our knowledge the first reported outbreak in red-legged partridges.

Key words: *Listeria monocytogenes*, listeriosis, partridge, encephalitis, outbreak, avian listeriosis, game birds, encephalitic listeriosis

Introduction

The genus *Listeria* consists of 10 species, two of which have been associated with disease in humans and animals (Orsi et al., 2011; Bertsch et al., 2013; Lang Halter et al., 2013). Disease due to *Listeria ivanovii* appears to be rare and restricted to
ruminants (Orsi et al., 2011; Low & Donachie, 1997). In contrast *Listeria monocytogenes* is associated with disease in a variety of animal species and man (Gray, 1958; Low & Donachie, 1997). *L. monocytogenes* has a worldwide distribution and is widespread within the environment (Gray & Killinger, 1966). There are 16 known serotypes but only three have been commonly described in context with disease which include 1/2a, 1/2b and 4b (Low & Donachie, 1997; Seeliger & Jones, 1986). Phylogenetically *Listeria* spp are divided into four different lineages with 1/2b and 4b predominantly belonging to lineage I, and 1/2a belonging to lineage II (Orsi et al., 2011).

Interest in *L. monocytogenes* increased in the 1980s when it was recognised as a significant food-borne pathogen causing disease in humans (Low & Donachie, 1997). In animals, clinically significant infections with *L. monocytogenes* are mostly recognised in ruminants (Low & Donachie, 1997). They have also been described in over 17 avian species including chickens, turkeys, geese, ducks, canaries, parrots and others (Gray & Killinger, 1966). However, listeriosis in birds appears to be rare and outbreaks are sporadic with varying morbidity and mortality (Gray, 1958). Birds are considered difficult to infect with *L. monocytogenes* and young birds are considered most susceptible to disease (Bolin, 1960; Basher et al., 1984). Listeriosis in birds mostly presents as septicaemia with splenomegaly, necrosis of liver and myocardium as well as pericarditis (Gray, 1958; Barnes & Nolan, 2008). Reports of outbreaks of avian encephalitic listeriosis are rare and originate mostly from chickens in the USA, Japan and India (Cooper, 1989; Cooper et al., 1992; Kurazono et al., 2003; Vijayakrishna et al., 2000). Wet weather (flooding), de-beaking or injections into the neck were reported to be likely predisposing factors. Torticollis, depression and incoordination
were a consistent clinical sign in affected birds. These neurological signs cannot be distinguished from those of the notifiable Newcastle Disease, which should be considered a potential differential diagnosis to encephalitic listeriosis (Irvine et al., 2009).

In the UK there have been occasional publications on the isolation of *L. monocytogenes* from avian species including chickens (*Gallus gallus domesticus*) (Paterson, 1937; Paterson, 1939), wild grey partridges (*Perdix perdix*) in the vicinity of an infected sheep flock (McDiarmid, 1961) and a merlin (*Falco columbarius*) that showed neurological signs after having eaten a sparrow presenting with neurological signs (Baker, 1967).

The only report found on listeriosis in red-legged partridges refers to the isolation of *L. monocytogenes* from two partridges in France in 1957 without providing any further information (Lucas & Seeliger, 1957).

This report describes the first case of encephalitic listeriosis affecting young red-legged partridges.

Materials and Methods

Background: In May 2011 four 16-day-old red-legged partridges (*Alectoris rufa*) with neurological clinical signs were submitted to the Royal Veterinary College – Animal Health and Veterinary Laboratory Agency (RVC-AHVLA) Surveillance Centre London for post mortem examination. The partridges originated from a game bird rearing farm that imported red-legged partridges as day-old chicks every two weeks during the season. A total of four batches (A-D) varying in size of between 15,000 and 30,000 were imported in 2011. The diseased 16-day-old partridge chicks were from batch A’s
25,000 birds which had lost approximately 30-40 chicks daily over the last eight days. Some birds were found dead but the majority exhibited neurological signs resulting in an inability to use the nipple drinkers. They subsequently either died or were culled.

Three sheds out of a total of 20 appeared to be particularly affected, whereas only occasional affected birds were detected in the remaining sheds. There was no improvement following treatment with various antibiotics. However losses started dropping from approximately four weeks of age onwards. Total losses in the first and worst affected batch A reached 5.2% at eight weeks of age (in previous years total losses in partridges on this farm had been approximately 2.5%-3% at 13 weeks). Three subsequent batches of red-legged partridges were also affected in the same age range but with a much lower morbidity. Their total mortality rate was within expectations for age and production type.

Further carcasses of affected birds from the original batch A and the second affected batch B were also submitted for post mortem examination at a later date as were day-old partridges of batch D that had died during transit and had never entered the sheds on the farm. A summary of submitted birds can be seen in table 1.

Sheep had been grazing the ground over the winter. However, partridges had no access to outside runs until four-week of age and were kept indoors on cardboard squares on top of a continuous polythene sheet. There was a good level of biosecurity and cleanliness on the farm. Drinking water was supplied from the mains via holding tanks together with electrolytes and multivitamin solution. The weather had been unusually dry and warm during the outbreak and there had been no flooding. Data from the trade control and expert system (TRACES) (a management system of the veterinary authorities to track animal imports within the EU and from outside) showed
that the investigated farm was the only farm in the UK that had received day-old partridge chicks from a specific supplier when the first and worst affected batch (A) arrived. Other farms in the UK received day-old partridges from the same supplier only more than a week later.

Gross pathology and histopathology: Routine post mortem examinations were performed on the submitted partridges as detailed in table 1. Live partridges were euthanased by cervical disarticulation following clinical examination. Swabs of brain and/or liver were taken from a total of nine birds and stored in charcoal transport medium until microbiological culturing. Small tissue samples of liver, lung, yolk sac and brain were removed from six one-day-old partridges of batch D that had died during import transit and were pooled in buffered peptone water prior to microbiological culture. Various tissue samples including brains were collected in 10% formol saline and processed for routine histopathology. Sections were prepared, embedded in paraffin wax, serially cut (5µm) and mounted on glass microscope slides. They were stained with haematoxylin and eosin, special Gram stains were also undertaken for some of the sections. **Environmental sampling:** Bacteriological swabs were taken from the lining of the delivery boxes of the day-old imported partridge chicks of batch C during the follow-up submission. Subsequently, a farm visit was carried out to collect epidemiological data and environmental samples. Sterile gauze swabs were moistened with buffered peptone water and swabs were taken from the floor of sheds affected by disease of two different batches (A and C), a shed with birds of batch A that had not been
affected by disease, straw of an affected shed and clean straw from the storage stack.

Aliquots were taken from drinking water, multivitamin solution and two types of feeding pellets. A summary of all collected environmental samples can be seen in table 2.

Microbiology: Routine cultures of samples took place on Columbia Blood agar (BA, Oxoid, Basingstoke, UK) and MacConkey agar (MAC, Oxoid) at 37°C. Bacteria were identified using standard laboratory techniques. *L. monocytogenes* was identified by colonial morphology as beta-haemolytic colonies on blood agar and small lactose fermenting colonies on MacConkey agar. They were Gram-positive short rods and catalase test positive. The colonies were confirmed as *L. monocytogenes* either by API Listeria (bioMérieux, Marcy-l’Etoile, France) or the CAMP test. (*L. monocytogenes* is CAMP test positive, *L. innocua* is CAMP test negative (McKellar, 1994)).

Many samples were additionally or only cultured in selective media: they were cultured directly onto *Listeria* Selective Agar (LSA, Oxoid) using a swab. Additionally 1g or 1ml of samples (depending on sample type) was inoculated into *Listeria* Selective Enrichment Broth (LSB, Oxoid). The LSA plates were incubated overnight at 30°C and daily examined for colonies typical of *Listeria*. The LSB was incubated at 30°C and subcultured after 24 hours onto fresh LSA and again after 48 hours. The subculture plates were examined after 24 and 48 hours for *Listeria*-like colonies as described above. Where *Listeria*-like colonies were isolated on LSA they were subcultured on to BA and MAC for further confirmation as described above.

Box liners and environmental samples were pre-enriched in buffered peptone water at 37°C overnight and then cultured directly onto LSA and transferred into LSB.
Antibiotic Sensitivity: Two isolates of *L. monocytogenes* isolates were tested against a panel of eight antibiotics, namely Ampicillin (10μg), Doxycycline (30μg), Enrofloxacin (5μg), Lincomycin (10μg), Penicillin (1μg), Tetracycline (10μg), Tylosin (30μg) and Trimethoprim/ Sulphamethoxazole (25μg), supplied as 6mm impregnated discs by Oxoid. They were placed on an Oxoid lysed blood sensitivity agar plate together with emulsified colonies and the plate was incubated for 18-20 hours at 37°C. The zones of inhibition around each antibiotic disc were measured using an automated ProtoZone sensitivity reader (Don Whitley Scientific, Shipley, UK). Resistance was denoted by a total zone diameter of 13mm or less. Resistance gene testing was performed by using an antimicrobial resistance gene microarray for Gram positive organisms that is available through Alere Technologies (Jena, Germany). Genomic DNA was isolated as described by Perreten et al. (2005). Approximately 100 ng of DNA was labelled by a randomly primed polymerization reaction using Sequenase, version 2.0 (USB Corporation, Cleveland, Ohio) and consisted of three cycles of enzymatic reactions (Bohlander et al., 1992). This was followed by hybridisation of the labelled fragments to the array following the protocol of Perreten et al (2005). The arrays were subsequently scanned and the IconoClust software (Alere™) used to identify positive signals.

Partial sequencing: In order to provide preliminary molecular confirmation of isolate identity the virtually complete 16S rRNA gene was amplified from the initial *L. monocytogenes* isolate of the brain of a red-legged partridge (bird 1Ab) by PCR using primer pair 5’ AGTTTGATCTGGCTCAG 3’ and 5’ ACCTTGTTACGACTT 3’ and sequenced.
using a series of internal primers as described previously (Hunt et al., 2013). Phylogenetic analysis previously described by Graves et al. (2010) was reproduced to confirm placement of the isolate relative to reference strains of *Listeria*. Phylogenetic analysis was performed using the MEGA5 program (Tamura et al., 2011) as described in figure legends. In order to further characterise phylogenetic position, sequencing of fragments of additional housekeeping genes (*sigB*, *gap* and *prs*) was also performed as described by Graves et al. (2010) and phylogenetic analysis was performed as above with reference to the sequences included in Graves et al. (2010).

Serogrouping and fAFLP: On receipt at the National reference Laboratory (NRL) for *Listeria* (Public Health England, London, UK), *Listeria* isolates were cultured on blood nutrient agar (BN) and incubated at 37°C for 12-24h. Bacterial nucleic acid was extracted from an isolated colony grown on BN plate, using MicroLYSIS™ reagent (Microzone Ltd, Haywards Heath, UK). Briefly, a 1μl loop full of bacterial growth was mixed with 19μl of MicroLYSIS solution. The mixture was then subjected to 65°C for 5 minutes, 96°C for 2 minutes, 65°C for 4 minutes, 96°C for 1 minute, 65°C for 1 minute and 96°C for 30 seconds and used directly for PCR.

L. monocytogenes was identified using an in-house duplex real time PCR exonuclease- assay (LM-PCR) amplifying simultaneously a specific 112 bp fragment of the *L. monocytogenes* haemolysin gene (*hlyA*) and a specific 80bp fragment of the *L. monocytogenes* phospholipase A (*plcA*) gene (Nogva et al., 2000). Each reaction contained 25μl of 1x TaqMan™ Fast Universal PCR Master Mix (Applied Biosystems, Life Technologies, California, US), 0.3μM of each of the forward and reverse primers (Eurogentec, Seraing Belgium), 0.1μM of each fluorescently labelled probes
(Eurogentec) and 5μl of crude or purified DNA extract. The reaction was performed under ‘FAST’ default conditions on an Applied Biosystems 7500 FAST Sequence Detection System (‘TaqMan’) according to the manufacturer’s protocol.

Molecular serogrouping of *L. monocytogenes* isolates was performed using the multiplex gel-based PCR assay (LSER-PCR) described by Doumith et al. (2004) using 5μl of DNA extract. Pre-cast ethidium bromide-stained 1.5% agarose E-gel© (Invitrogen, Life Technologies) were used to separate the multiplex PCR products by electrophoresis. Results of the electrophoresis were visualised under UV light and photographed using a BioRad™ UV Gel-doc© system (Hemel Hempstead, UK).

According to the pattern obtained (Doumith et al., 2004; Huang et al., 2011) isolates were classified as being one of the four *L. monocytogenes* serogroups, as *Listeria* spp. or as being non *Listeria* species.

Fluorescent amplified fragment length polymorphism (fAFLP) technique was used to sub-type *L. monocytogenes* isolates and was performed using a modification of a protocol previously described for *Campylobacter* (Desai et al., 2001). Briefly, genomic DNA (15-50ng) was digested with 5U of each of two restriction enzymes, HindIII and *Hha*I, (New England Biolabs, Hitchin UK) in the presence of RNase A and bovine serum albumin. Digested fragments were ligated to two sets of specifically designed double stranded adapters. These adapters served as targets for a FAM-labelled Hind-A and a non-labelled Hha-A selective primers (Eurogentec, Seraing Belgium) for fragment amplification by PCR. PCR products were separated on an ABI 3730XL 96capillary DNA Analyzer (Applied Biosystems) alongside a GeneScan™- 600 LIZ™ Size standard, and chromatographs showing FAM-fluorescing fragments were saved as .fsa files. The .fsa files were exported, visualised and analysed on PEAK SCANNER™ v1.0 (Applied
Biosystems, Life Technologies, Paisley UK). As well as the chromatographs, PEAK SCANNER™ also recorded the fragment data in a binary format in Excel files. These files were then exported into Bionumerics v6.1 where they were visualised as virtual electrophoresis gels and analysed. The patterns determining the fAFLP types were identified using in-house built libraries.

Results

Clinical signs: All four live affected red-legged partridge chicks in the first submission exhibited marked neurological signs including torticollis, head tilt and incoordination (Fig. 1).

Gross post mortem findings: Other than septicaemia with perihepatitis and pericarditis in one dead carcass (bird 2Be) and pneumonia concurrent with neurological signs in one live bird (bird 1Aa), there were no significant gross post mortem findings in the remaining carcasses. The majority of the birds had empty crops and gizzards and slightly prominent ureters. Given the clinical history and the absence of clear gross post mortem findings, the case was notified to Animal Health as suspect Newcastle Disease as required under EU council directive 92/66/EEC. Newcastle disease was ruled out following official laboratory tests carried out by government laboratories.

Histopathological findings: Examination of brain tissues revealed focal sub-acute encephalitis of the brainstem and cerebellum with gliosis and perivascular cuffing. In addition, a microabscess was detected in one of those brains. In two of the brains Gram positive bacilli were associated with the lesions (Fig. 2). Other examined tissues
including heart, lung, liver, intestine and sections of spinal cord were mostly
unremarkable other than concurrent focal fibrinogranulocytic pneumonia and
bronchitis with bacterial infection and possibly inhaled foreign plant material in one
of the birds (1Aa).

Microbiological findings: The bacteriological results are illustrated in table 1 and 2. In
summary, *L. monocytogenes* was isolated on routine bacteriological culture in mixed
growth from one of two brain swabs in submission 1 and on direct culture in selective
media from three out of four brain swabs in submission 2. This also included a swab
from the brain of a partridge belonging to the second (younger) Batch B. Following
enrichment and selective culture *L. monocytogenes* was also isolated from multiple
environmental samples including from the sheds of different batches (A and C) of
partridges regardless of whether there was a high level of neurological disease in the
shed or not. However, no *Listeria* spp were isolated from samples of the drinking
water, feed or multivitamin solution. *L. innocua* was isolated from the clean straw
from the storage area that served as source for the straw used in the corners of the
sheds. No *Listeria* spp were isolated from the transit boxes. However, *L.
monocytogenes was isolated from an organ pool (liver, lung, yolk sac and brain) of six
one-day-old partridges of the fourth batch (D) that had died during import transit and
never entered the farm sheds.

Antibiotic resistance: The original *L. monocytogenes* isolate from the brain of partridge
b of the first submission and the *L. monocytogenes* isolate from the organ pool of the
day-old partridges both underwent testing for antibiotic sensitivity, showing
resistance to Doxycycline and Tetracycline and sensitivity to Trimethoprim/Sulphamethoxazole, Lincomycin, Tylosin, Ampicillin, Penicillin and Enrofloxacin.

Gene array analysis revealed that both isolates were positive for both probes for the tetM gene (both also single positive for tetZ; the 1Ab isolate had a single positive probe for mupR and vanD; the day-old isolate had a single positive probe for tetL).

Partial sequencing results: Molecular sequence analysis was carried out on the original isolate from partridge 1Ab to confirm identity of the strain and to establish its relationship with other Listeria isolates. Analysis was carried out in comparison with a recent detailed analysis that described a novel species Listeria marthii (Graves et al., 2010). Sequencing and phylogenetic analysis of the partial 16S rRNA gene, as shown in Figure 3, demonstrated that the isolate is most closely related to L. monocytogenes strains including the type strain NCTC 10357. In order to obtain more phylogenetic information a more comprehensive analysis was carried out using concatenated sequences of three housekeeping genes (sigB, prs and gap) and undertaking direct comparison with previous analyses (Graves et al., 2010). As illustrated in Figure 4 these analyses provided more precise description of the isolate placing it clearly within lineage II of L. monocytogenes.

Fluorescent Amplified Fragment Length Polymorphism (fAFLP) results: Five isolates of L. monocytogenes from this outbreak in partridges including samples from brain swabs and environment underwent serogrouping and fAFLP testing at the NRL.
Additionally, a few *L. monocytogenes* isolates of animal origin kept in the AHVLA bacterial strain collection underwent similar analysis. These additional isolates included one from a partridge heart collected in 1992, two from pheasant livers of 1998 and 2002, two from chicken organs, as well as isolates from the brain of cattle, sheep and goat. The results as illustrated in Fig. 5 revealed that the majority of animal samples including all partridge samples belonged to serogroup 1/2a with fewer belonging to 1/2b or 4. Interestingly, all partridge isolates from the current outbreak were in the same fAFLP group VIIa.84. This group has not previously been detected in the UK. The other isolate from a partridge in 1992 was related but not identical with a similarity of 83.8% (fAFLP group: VIIa.85). In contrast all other samples of animal or human origin were not closely related.

Discussion

To the best of our knowledge this is the first report of an outbreak of encephalitic avian listeriosis in Great Britain and the first one in red-legged partridges worldwide. Previous outbreaks of avian encephalitic listeriosis have so far been reported in chickens and had morbidities <0.5% (Cooper, 1989; Cooper et al., 1992; Kurazono et al., 2003). The estimated morbidity of encephalitic listeriosis in the first batch of red-legged partridges in this case was higher and approximated 3%. In the subsequent three batches however, estimated morbidity of neurological disease dropped continuously and could not be clearly separated from the expected background mortality for partridges of this age. Clinical, microbiological and histopathological findings as well as the absence of gross post mortem findings were consistent with encephalitic listeriosis. In line with
previous publications, isolation of *L. monocytogenes* was restricted to swabs from the brain and there was mixed growth on routine cultures in the initial submission, from which *L. monocytogenes* was isolated (Gray, 1958; Cooper, 1989). The success rate for isolating *L. monocytogenes* improved when media selective for *Listeria* spp and enrichment steps were used and swabs were taken from the brainstem area of the birds.

The original isolate was confirmed as *L. monocytogenes* by 16S RNA sequencing. Additional sequencing placed it into Lineage II, one of at least four evolutionary lineages of *L. monocytogenes* that is common in foods, widespread in natural and farm isolates and commonly associated with animal listeriosis cases as well as sporadic human cases (Orsi et al., 2011). In contrast most human listeriosis outbreaks are associated with lineage I isolates. Lineage II isolates are most commonly associated with serotypes 1/2a, 1/2c and 3a and are notable for extensive plasmid carriage and associated resistance to environmental compounds as well as bacteriocin resistance (Orsi et al, 2011). In this context, it was interesting to note that the *L. monocytogenes* isolate from the partridge was resistant to tetracyclines in spite of antibiotic resistance to tetracyclines being considered uncommon amongst *Listeria* spp. High levels of tetracyclines are even recommended for treatment of the disease by some authors (Barnes & Nolan, 2008). Morvan et al. (2010) showed that 0.77% of *Listeria monocytogenes* isolates from humans in France were resistant to tetracyclines.

The main questions that remained following the initial diagnosis in this outbreak included: how did the pathogen enter the farm and the partridges; how did it spread; why did it cause disease in so many birds; and why was disease restricted to the nervous system in spite of most earlier publications referring to listeriosis causing septicaemic disease in avian species (Gray, 1958).

L. monocytogenes has been shown to be widespread in the environment including in the soil and silage and many species including sheep, cattle and avian species have
been shown to harbour it in and excrete it from the intestine without any clinical signs (Low & Donachie 1997). Oral infection with the pathogen is considered most common (Gray & Killinger, 1966). It was therefore surprising that the diseased partridges had not had any soil contact prior to disease development. There was also no indication of the involvement of water or feed. However, there was widespread presence of the pathogen in the indoor environment of the sheds, identifying this as potential mode of spread for disease from infected birds. No *L. monocytogenes* was isolated from the clean straw prior to being used in the sheds and this was therefore unlikely to have introduced the pathogen into the sheds.

Interestingly, *L. monocytogenes* was isolated from an organ pool of day-old imported partridges that had never entered the farm buildings suggesting the possibility that the pathogen was introduced into the farm by imported newly hatched birds that might have been infected in the hatchery or during transit. This theory would also potentially provide an explanation for the differences in morbidity in the various sheds depending on where the infected birds had been placed. Wet weather, flooding, de-beaking and injections have been considered predisposing factors for disease in previous avian outbreaks of encephalitic listeriosis with flooding having been suspected as the potential mode of pathogen distribution (Cooper et al., 1992; Kurazono et al., 2003). However, neither weather conditions nor management factors are believed to have played a significant role in this case given a very dry and warm spring and good management and biosecurity levels on the farm. Horizontal spread of infection from in-contacts is therefore being hypothesised. Birds are considered difficult to infect with *L. monocytogenes*, however, Basher et al. (1984) found that
newly hatched chicks could be infected by natural contact to experimentally infected young chicks and subsequently develop disease and die.

Additional testing supported the theory that the pathogen had been introduced into the farm by imported day-old chicks by identifying a similar antibiotic resistance pattern between the different *L. monocytogenes* isolates with resistance to tetracyclines likely due to the *tet(M)* gene.

The bacterial isolates from this outbreak also all belonged to serogroup 1/2a, which is commonly associated with clinical cases of listeriosis in animals in contrast to outbreaks in humans that are mostly associated with serogroups 1/2b or 4b from lineage I (Orsi et al., 2011). Interestingly, the isolates from the previously reported outbreaks of avian encephalitic listeriosis in chickens in the USA and Japan all belonged to serogroup 4b (Cooper, 1989; Cooper et al., 1992; Kurazono et al., 2003), as did one of the isolates from red-legged partridges in France in 1957; the other isolate was no further classified than serogroup 1 (Lucas & Seeliger 1957). These had been to the best of our knowledge the only reported *L. monocytogenes* isolates from red-legged partridges worldwide.

Further subtyping by f AFLP revealed that all isolates from this outbreak also belonged to the same f AFLP type: VIIa.84. This f AFLP type was different to any previously identified by Public Health England (Corinne Amar, personal communication). It was also different to other animal isolates analysed at the same time. Most closely related was an isolate collected from the heart of a partridge from a different farm in 1992 and analysed now at the same time that had 83.8% similarity in its f AFLP profile. This raises the question as to whether a partridge specific strain of *L. monocytogenes* might exist. Unfortunately, this was the only *L. monocytogenes* isolate of a partridge
available from the AHVLA bead collection due to the rarity of diagnosed listeriosis in avian species in the UK. Isolates from pheasants, chickens and brains of ruminants could be classified into different fAFLP groups and some even different serogroups e.g. 1/2b or 4.

This very interesting and unusual case left several questions unanswered. It remains unclear what underlying factors allowed disease to develop to such an extent and why it manifested itself as neurological disease. There was no indication for visceral disease caused by *L. monocytogenes*. It also remained unclear why there had been no similar reports from other farms though the absence of additional imports from the same supplier source at the same time as the first batch was acquired might account for this. The morbidity in subsequent batches was much lower and cases might have been missed amongst “normal” mortality rates.

L. monocytogenes is a well-recognised zoonotic pathogen but the zoonotic risk in this case was considered low as the majority (99%) of human infections are foodborne (Mead et al., 1999; Swaminathan & Gerner-Smidt, 2007). There have however been reports of cutaneous or ocular infection due to contact with infected animals (McLauchlin et al., 2004) and the farmer and his workers were made aware of potential risks. No human health issues were observed during this outbreak.

A further important aspect of this outbreak with marked neurological signs and a rise in mortality was that avian notifiable disease, specifically Newcastle Disease, could not be ruled out on clinical grounds, notification of suspect disease took place and subsequent official laboratory tests were required. There can be a large variation in the nature and severity of clinical signs seen in cases of avian notifiable disease
(Newcastle disease or Avian Influenza). Therefore any progressive neurological signs
in poultry and game birds coupled with an unexplained rise in mortality or drop in
production should prompt the consideration of avian notifiable disease as an
alternative differential diagnosis (Irvine et al., 2009).

On the basis of the findings in this report, listeriosis should also be considered an
unusual but potential cause for neurological signs in avian species – not only in
individual birds but also in an outbreak-like situation.

ACKNOWLEDGEMENTS

The authors would like to thank Nikki MacLaren for her technical support with the
antibiotic resistance testing, the Animal Health Office Chelmsford for providing
relevant information from the TRACES data and the farmer for his continuous support
of this investigation.

This work was supported by the Defra Emerging Diseases and Welfare programme
under project ED 1300.

REFERENCES

Baker, J. R. (1967). Listeriosis in a Merlin (Falco columbarius). *Bird Study, 14*, 114-
115.

J.R. Glisson, L.R. McDougald, L.K. Nolan, D.E. Swayne (Eds.) *Diseases of
Poultry* 12th edn (p. 407) Blackwell Publishing

Pathogenicity of natural and experimental listeriosis in newly hatched chicks.
Research in Veterinary Science, 36, 76-80.

Table 1: Summary of bacteriological findings, brain histopathology and other findings in the submitted red-legged partridges. Live submitted birds were showing neurological signs.

<table>
<thead>
<tr>
<th>Submission (date)</th>
<th>Batch</th>
<th>Individual identifier</th>
<th>Age (days)</th>
<th>Bacteriology</th>
<th>Histopathology of brain</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (06/05/11)</td>
<td>A</td>
<td>Bird 1Aa (live)</td>
<td>16</td>
<td>ND</td>
<td>Focal subacute encephalitis of the brainstem and cerebellum with associated Gram positive bacilli</td>
<td>Acute pneumonia and bronchitis</td>
</tr>
<tr>
<td>1 (06/05/11)</td>
<td>A</td>
<td>Bird 1Ab (live)</td>
<td>16</td>
<td>Brain: mixed growth including Lm on routine culture</td>
<td>As above</td>
<td>No growth on fungal culture; liver lead: 3.2µmol/kg DM</td>
</tr>
<tr>
<td>1 (06/05/11)</td>
<td>A</td>
<td>Bird 1Ac (live)</td>
<td>16</td>
<td>Brain: NSO</td>
<td>As above but no Gram positive bacilli visible</td>
<td>No growth on fungal culture</td>
</tr>
<tr>
<td>1 (06/05/11)</td>
<td>A</td>
<td>Bird 1Ad (live)</td>
<td>16</td>
<td>Liver: NG</td>
<td>As above with no Gram positive bacilli visible but microabscess in one section</td>
<td></td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>A</td>
<td>Bird 2Aa (live)</td>
<td>28</td>
<td>Brain: mixed incl Lm on LSA</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>A</td>
<td>Bird 2Ab (dead)</td>
<td>28</td>
<td>Brain: mixed incl Lm on LSA</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>B</td>
<td>Bird 2Bc (dead)</td>
<td>14</td>
<td>Brain: mixed incl Lm on LSA</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>B</td>
<td>Bird 2Bd (dead)</td>
<td>14</td>
<td>Brain: NSO</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>B</td>
<td>Bird 2Be (dead)</td>
<td>14</td>
<td>Liver: NSO</td>
<td>ND</td>
<td>Marked perihepatitis, pericarditis, very poor body condition</td>
</tr>
<tr>
<td>2 (18/05/11)</td>
<td>C</td>
<td>Bird 2Cf (live)</td>
<td>1</td>
<td>Brain: NSO</td>
<td>ND</td>
<td>Holding head back following transit during import</td>
</tr>
<tr>
<td>Death in transit (02/06/11)</td>
<td>D</td>
<td>Birds x 6 (dead)</td>
<td>1</td>
<td>Organ pool- incl Lm on LSB</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

ND, not done; Lm, Listeria monocytogenes; NSO, no significant organism; NG, no growth; LSA, Listeria Selective Agar; LSB, Listeria Selective enrichment Broth;
Table 2: Summary of the bacteriological results from environmental samples

<table>
<thead>
<tr>
<th>Submission</th>
<th>Batch</th>
<th>Sample</th>
<th>Bacteriology - selective Listeria culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>Transit box 1 – box liner</td>
<td>NSO</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Transit box 2 – box liner</td>
<td>NSO</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Water – drinking water</td>
<td>NG</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Pellets</td>
<td>NG</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Super fine crumbs</td>
<td>NG</td>
</tr>
<tr>
<td>Farm floor swab</td>
<td>A</td>
<td>Shed 8 - affected</td>
<td>mixed incl Lm on LSB</td>
</tr>
<tr>
<td>Farm floor swab</td>
<td>A</td>
<td>Shed 10 - affected</td>
<td>NSO</td>
</tr>
<tr>
<td>Farm floor swab</td>
<td>A</td>
<td>Shed 4 - not affected</td>
<td>mixed incl Lm on LSB</td>
</tr>
<tr>
<td>Farm floor swab</td>
<td>C</td>
<td>Shed 19 - affected</td>
<td>mixed incl Lm on LSB</td>
</tr>
<tr>
<td>Farm floor swab</td>
<td>A</td>
<td>Straw – shed 10 affected</td>
<td>mixed incl Lm on LSB</td>
</tr>
<tr>
<td>Farm</td>
<td></td>
<td>Clean straw</td>
<td>mixed incl Listeria innocua on LSA/LSB</td>
</tr>
<tr>
<td>Farm</td>
<td></td>
<td>Multivitamin solution</td>
<td>NG</td>
</tr>
<tr>
<td>Farm</td>
<td></td>
<td>Water</td>
<td>NG</td>
</tr>
</tbody>
</table>

NSO, no significant organism; **NG**, no growth; **MG**, mixed growth; **Lm**, *Listeria monocytogenes*; **LSB**, Listeria Selective enrichment Broth; **LSA**, Listeria Selective Agar

Figure legends:

Fig. 1: Torticollis in a 16-day-old live partridge chick.
Fig. 2: Brain, parasagittal section, border of brainstem and deep cerebellar white matter of a red-legged partridge: Microabscess with mixed mainly mononuclear leucocyte infiltration with perivascular lymphocytic cuffing, gliosis and central necrosis. Note swollen degenerate axons within vacuoles (arrows) (HE, scale bar = 200μm). *Inset:* Gram positive bacilli (arrows) within the microabscess (Gram stain, scale bar = 20 μm).
Fig. 3: Phylogenetic analysis of representatives of the genus *Listeria* (Graves et al., 2010) inferred from 16S rRNA gene comparison. The tree was constructed in MEGA5 using the neighbor-joining approach following CLUSTAL alignment of sequences trimmed to a 1397 bp consensus contig and applying the Jukes-Cantor substitution model. Numbers at nodes correspond to proportions of 500 resamplings that support the topology shown with values >50% indicated. Bar = 0.005 substitutions per nucleotide position. The isolate from the case referred to in this report (bird 1Aa) is identified as 19-B006-05-11.
Fig. 4: Phylogenetic analysis of representatives of the genus *Listeria* based on concatenated *sigB*, *gap* and *prs* sequences showing the position of 19-B006-05-11 relative to sequences described by Graves et al. (2010). The tree was constructed in MEGA5 using the neighbor-joining approach following CLUSTAL alignment of sequences and applying the Jukes-Cantor substitution model. Numbers at nodes correspond to proportions of 500 resamplings that support the topology shown with values >70% indicated. Bar = 0.01 substitutions per nucleotide position.
Fig. 5: Dendogram of fAFLP similarity. *L. monocytogenes* isolates of various human and animal sources including isolates from partridges and environment of this outbreak (first five isolates) and one isolate from a partridge from a different case in 1992 (Partridge-heart) underwent serogrouping and fAFLP testing for similarity. The first isolate ‘Partridge–brain’ refers to the initial isolate (19-B006-05-11) in this outbreak from the brain of the submitted 16-day-old partridge. The second isolate ‘Partridge–organ pool’ refers to the isolate from the organ pool of one-day-old partridges that had never entered the farm.

<table>
<thead>
<tr>
<th>Percentage of similarity</th>
<th>Serogroup</th>
<th>Source of isolates</th>
<th>fAFLP type</th>
<th>Source information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>Villa 84</td>
<td></td>
<td>Partridge-brain</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>Villa 84</td>
<td></td>
<td>Partridge-organ pool</td>
</tr>
<tr>
<td>1.2a</td>
<td>Environmental</td>
<td>Villa 84</td>
<td></td>
<td>Partridge’s shed</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>Villa 84</td>
<td></td>
<td>Partridge-brain</td>
</tr>
<tr>
<td>1.2a</td>
<td>Environmental</td>
<td>Villa 84</td>
<td></td>
<td>Partridge’s shed</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>Villa 85</td>
<td></td>
<td>Partridge-heart</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>III.3</td>
<td></td>
<td>Food meat</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>III.3</td>
<td></td>
<td>Food fish</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>III.3</td>
<td></td>
<td>Cattle-brain</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>III.3</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>III.32a</td>
<td></td>
<td>Pheasant-liver</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>III.58</td>
<td></td>
<td>Pheasant-liver</td>
</tr>
<tr>
<td>1.2a</td>
<td>Environmental</td>
<td>XIV.3a</td>
<td></td>
<td>Food processing environment</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>XIV.3a</td>
<td></td>
<td>Food butter</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>XIV.3a</td>
<td></td>
<td>Food poultry</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>XIV.3a</td>
<td></td>
<td>Food cheese</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>XIV.3a</td>
<td></td>
<td>Food meat</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>XIV.3a</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>1.2a</td>
<td>Food</td>
<td>XIV.3a</td>
<td></td>
<td>Food cream</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>XIV.3a</td>
<td></td>
<td>Human-cerebrospinal fluid</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>XIV.3a</td>
<td></td>
<td>Chicken-heart</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>XIV.3a</td>
<td></td>
<td>Human-placenta</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>XIV.3a</td>
<td></td>
<td>Human-CSF</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>XIV.23</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>XIV.23</td>
<td></td>
<td>Sheep-brain</td>
</tr>
<tr>
<td>4</td>
<td>Food</td>
<td>V.3</td>
<td></td>
<td>Food meat</td>
</tr>
<tr>
<td>4</td>
<td>Food</td>
<td>V.3</td>
<td></td>
<td>Food cheese</td>
</tr>
<tr>
<td>4</td>
<td>Animal</td>
<td>V.3</td>
<td></td>
<td>Sheep-brain</td>
</tr>
<tr>
<td>4</td>
<td>Human</td>
<td>V.3</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>4</td>
<td>Human</td>
<td>V.3</td>
<td></td>
<td>Human-aneurysm sac</td>
</tr>
<tr>
<td>4</td>
<td>Human</td>
<td>V.3</td>
<td></td>
<td>Human-CSF</td>
</tr>
<tr>
<td>4</td>
<td>Animal</td>
<td>BA4.1</td>
<td></td>
<td>Goat-brain</td>
</tr>
<tr>
<td>4</td>
<td>Human</td>
<td>BA4.1</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>1.2a</td>
<td>Human</td>
<td>IVb 55</td>
<td></td>
<td>Human-blood</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>IVb 55</td>
<td></td>
<td>Cattle-brain</td>
</tr>
<tr>
<td>1.2a</td>
<td>Animal</td>
<td>IVb 58</td>
<td></td>
<td>Chicken-liver</td>
</tr>
</tbody>
</table>