This is the peer-reviewed, manuscript version of the following article:

The final version is available online via http://dx.doi.org/10.1136/vr.103588.

The full details of the published version of the article are as follows:

TITLE: Wylie, C. E., Shaw, D. J., Verheyen, K. L. P. and Newton, J. R.
AUTHORS: Wylie, C. E., Shaw, D. J., Verheyen, K. L. P. and Newton, J. R.
JOURNAL TITLE: Veterinary Record
VOLUME/EDITION: 178/17
PUBLISHER: BMJ Publishing Group
PUBLICATION DATE: 11 March 2016 (online)
DOI: 10.1136/vr.103588
Decision tree analysis of clinical data to aid diagnostic reasoning for equine laminitis: a cross-sectional study.

Claire E. Wylie (1&2)* BVM&S MSc PhD MRCVS, Darren J. Shaw (3) BSc PhD, Kristien L.P. Verheyen (4) DVM MSc PhD FHEA MRCVS, J. Richard Newton (1) BVSc MSc PhD DLSHTM DipECVPH FRCVS

(1) Epidemiology Department, Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, UK
(2) Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket, Suffolk, UK
(3) Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, Scotland, UK
(4) Veterinary Epidemiology, Economics and Public Health Group, Department of Production and Population Health, Royal Veterinary College, North Mymms, Hatfield, Hertfordshire, UK

Contact: Claire Wylie: Rossdales Equine Hospital, Cotton End Road, Exning, Newmarket, Suffolk, UK
claire.wylie@rossdales.com

Sources of Funding
This project was funded by World Horse Welfare. CEW is funded by The Margaret Giffen Trust. JRN is supported through a combined contribution to the Animal Health Trust’s
Equine Infectious Disease Service from the Horserace Betting Levy Board (HBLB),

Racehorse Owners Association (ROA) and Thoroughbred Breeders’ Association (TBA)
Abstract

The objective of this cross-sectional study was to compare the prevalence of selected clinical signs in laminitis cases and non-laminitic but lame controls to evaluate their capability to discriminate laminitis from other causes of lameness. Participating veterinary practitioners completed a checklist of laminitis-associated clinical signs identified by literature review. Cases were defined as horses/ponies with veterinary-diagnosed, clinically apparent laminitis; controls were horses/ponies with any lameness other than laminitis. Associations were tested by logistic regression with adjusted odds ratios (OR) and 95% confidence intervals, with veterinary practice as an a priori fixed effect. Multivariable analysis using graphical classification tree-based statistical models linked laminitis prevalence with specific combinations of clinical signs. Data were collected for 588 cases and 201 controls. Five clinical signs had a difference in prevalence of greater than +50%: ‘reluctance to walk’ (OR 4.4), ‘short, stilted gait at walk’ (OR 9.4), ‘difficulty turning’ (OR 16.9), ‘shifting weight’ (OR 17.7) and ‘increased digital pulse’ (OR 13.2) (all \(P<0.001 \)). ‘Bilateral forelimb lameness’ was the best discriminator; 92% of animals with this clinical sign had laminitis (OR 40.5, \(P<0.001 \)). If, in addition, horses/ponies had an ‘increased digital pulse’, 99% were identified as laminitis. ‘Presence of a flat/convex sole’ also significantly enhanced clinical diagnosis discrimination (OR 15.5, \(P<0.001 \)). This is the first epidemiological laminitis study to use decision-tree analysis, providing the first evidence-base for evaluating clinical signs to differentially diagnose laminitis from other causes of lameness. Improved evaluation of the clinical signs displayed by laminitic animals examined by first-opinion practitioners will lead to equine welfare improvements.
Introduction

Equine laminitis is a painful disease of the foot that affects equidae worldwide (Mellor and others 2001; Wylie and others 2011). The insidious nature of the disease and potential for unrelenting pain often necessitates euthanasia of the affected animal on welfare grounds (Hunt 1993; Menzies-Gow and others 2010b). Effective diagnosis is necessary to allow prompt instigation of palliative and therapeutic treatments, to maximise recovery prospects.

In equine medicine, 'laminitis' is used to describe animals presenting with pain localised to the lamellar region of the foot, with or without concurrent solar pain under the distal margin of the distal phalanx (Stashak 2002). There are no universally accepted gold-standard techniques for the detection and quantification of the four stages of laminitis (Eustace 2010; Herthel and Hood 1999; Hunt and Wharton 2010; Menzies-Gow and others 2010c; Swanson 1999). Acute laminitis arises with the development of clinical signs appreciable as changes in the normal stance and gait of the animal (Baxter 1994; Coffman and Garner 1972; Swanson 1999). Acute laminitis either progresses to the subacute form or to the chronic form of the disease. The subacute stage can either persist, develop to chronic laminitis, or lead to complete recovery. Development of chronic laminitis usually results in a cycle of recurrent episodes (Hood 1999). The terminology used to describe chronic laminitis is extremely variable (Parks and Mair 2009), but is often taken to describe progression from acute laminitis to failure of the SADP resulting in dislocation of the DP following detachment of the hoof wall (Grosenbaugh and others 1999).

Laminitis is necessarily commonly diagnosed solely on the presence of a combination of characteristic clinical signs (Baxter 1994; Vinuela-Fernandez et al. 2011a). Diagnostic challenges are compounded by the multifactorial aetiology of the disease, which can arise as a consequence of systemic inflammatory disease, endocrine disease or abnormal weight/load bearing which may initiate distinct pathophysiological processes as reviewed by Eades (2010). However, the common feature of all cases of laminitis is the induction of
pathological changes within the SADP, resulting in overt foot pain and clinical signs related
to lameness (Baxter 1994; Budras and others 2009a; Budras and others 2009b).

Despite the perceived importance there is remarkably little evidence-based data regarding the
clinical presentation of laminitis (Eustace 2010; Hunt and Wharton 2010; Mellor and others
2001; Wylie and others 2013a), adding to inherent difficulties in establishing accurate
diagnosis of laminitis due to the non-specific nature of clinical signs and the absence of
robust case definitions. Furthermore, there is no general agreement regarding standardised
criteria to diagnose laminitis or to classify affected animals based on the phase of disease
progression and/or disease aetiology (Parks and Mair 2009; Rohrbach and others 1995). The
debilitating consequences of laminitis do, however, require prompt veterinary intervention
and accurate diagnosis is therefore essential.

All the factors outlined above complicate the overall challenge of diagnostic reasoning based
on clinical signs, presenting the veterinary clinician with a challenge to diagnose laminitis
differentially from other forms of orthopaedic disorder. Therefore, the aim of this study was
to compare the prevalence of selected clinical signs in laminitis and non-laminitis lameness
cases in order to evaluate the capabilities of clinical signs to differentially diagnose laminitis
from other causes of lameness. The study is presented considering recommendations
of the Strengthening the Reporting of Observational studies in Epidemiology
(STROBE) statement (von Elm and others 2007).

Materials and Methods

Data were collected from two groups:

Group A
A convenience sample of five veterinary institutions (two referral centres, two large first-opinion and referral equine hospitals and a first-opinion mixed practice) were visited and invited to provide data for this study. In addition, veterinary practices (n=93) that were interested in participating in a parallel epidemiological investigation of equine laminitis, were contacted by telephone or email and invited to provide data on clinical signs of lameness (of any origin) for the study reported here.

A literature review was conducted to identify previously suggested clinical signs of laminitis and differential diagnoses. The resultant list was reviewed by expert equine clinicians in selected referral hospitals and laminitis researchers, and a ‘lameness reporting form’ (LM) (Supplementary Information Item 1) was designed to gather information on laminitis-relevant clinical signs from both laminitic (cases) and non-laminitic lame (controls) horses.

Part one of the LM gathered case identifying information with five subsequent sections recording whether clinical signs pertaining to the foot, stance and lameness irregularities (clinical signs) were present, absent or had not been assessed. Part two of the LM allowed practitioners to record their diagnosis as free text and to select specific diagnostic techniques used to confirm the diagnosis from six tick-box options. A free-text comments section was also included for any additional information pertinent to confirmation of the diagnosis.

Participating practitioners were asked to complete a LM for equine lameness of any origin seen between February-April 2009, and January 2010-May 2011, with the second phase of data collection initiated to increase numbers for analysis. Completed forms were returned by post using supplied reply-paid envelopes. Upon arrival LMs were divided into two groups for analysis: one group containing reported laminitis cases and another containing all animals for which the primary cause of lameness was not laminitis (controls).

Group B

Following this development phase, a ‘laminitis reporting form’ (LRF) was finalised (Supplementary Information Item 2) as previously described (Wylie and others 2013a).
for the LM, the LRF consisted of five distinct sections on lameness, stance characteristics, feet affected and observed laminitis-related acute and chronic clinical signs. Based on the data collected from animals in Group A, some modifications to the form were made, hence for the purposes of this study only those clinical signs which were reported for both groups were compared. No further clinical data were recorded for the purposes of this study.

A LRF was completed for any case of laminitis, defined as a horse or pony with veterinary-diagnosed, clinically apparent laminitis (i.e. an active episode of laminitis), attended by one of the participating practitioners (Wylie and others 2013a). In animals with recurring laminitis, an episode of veterinary-diagnosed active laminitis was defined as new if the animal had returned to its previous/normal level of soundness and had not received analgesic medication for 14 days or more between episodes (Wylie and others 2013a). However, for the purposes of this study only the first episode of laminitis was included. Practices were asked to complete the LRF for all eligible cases occurring from May 2009 to April 2011.

Statistical analysis

To increase the numbers for data analysis, Groups A and B were combined. Multiple different clinical signs were categorised (present, not present or not assessed) under the following five sections:

1. Lameness: recumbency, refusal to move unless forced, reluctance to walk, lame at walk, lame at trot, short stilted gait at walk, short stilted gait at trot, difficulty turning
2. Stance: shifting weight, front feet placed in front of body, reluctance to lift foot
3. Feet affected: bilateral front feet, bilateral hind feet or all four feet
4. Acute clinical signs: increased digital pulse, increased hoof temperature, pain on sole pressure

https://mc.manuscriptcentral.com/vetrec
Chronic clinical signs: Coronary band swelling, coronary band depression, divergent
growth rings, change in hoof wall angle, wall separation, flat/convex sole, widened
white line, pink crescent dorsal to frog, sole prolapse

Initial examination, coding of data and descriptive analyses were conducted using Microsoft Excel (Excel 2003, Microsoft). The prevalence (including corresponding 95% confidence intervals [CI]) of each clinical sign, excluding records where the sign was not assessed, in both case and control animals and the between-group differences in prevalence of presence of clinical sign were determined. Associations between each clinical sign and case or control status were tested using logistic regression models reporting adjusted odds ratios (OR) taking into account veterinary practice as a fixed effect, with 95% confidence intervals (CI), and Wald test P-values. All analyses were conducted in R Statistical Package (version 3.1.2 © 2014 The R Foundation for Statistical Computing) using the ‘epicalc’ and ‘tree’ packages. Statistical significance was set at a value of $P < 0.05$.

Multivariable analysis was carried out using a multi-factorial classification - tree-based statistical models (hereafter ‘tree models’) (Clark and Pregibon 1997). This analytical technique was chosen due to the unbalanced dataset with potentially different combinations of factors present in different horses. The analysis consisted of determining a binary division of the clinical signs prevalence data (laminitis vs. non-laminitis lameness), such that there is the largest difference in terms of prevalence of laminitis vs. non-laminitis lameness for those two subsets of data. One subset of animals with a specific clinical sign is first considered (e.g. those with ‘bilateral forelimb lameness’) and the binary division in terms of any of the other clinical signs resulting in the largest difference in prevalence of laminitis is determined. The other subset is then considered (e.g. those with no ‘bilateral forelimb lameness’) and again the clinical signs for which binary division gives the largest difference in prevalence of laminitis vs. non-laminitis lameness is determined. The different “branches” of the tree are independent of each other in terms of what binary partitions are presented. This binary partitioning is continued for smaller and smaller subsets of data until no differentiation in
terms of prevalence is possible. The trees are then ‘pruned’ to exclude very small
differentiations based on a few horses. The analysis is presented in graphical form allowing
easy comprehension of the grouping of clinical signs giving the largest differences in
prevalence in the data. Univariable comparisons of the distribution of clinical signs for
particular subsets identified in the trees were then carried out as per the association between
clinical signs and case/controls status described above.

Five separate preliminary tree models were produced for the following characteristics to
represent the features of clinically active laminitis recorded: i) lameness, ii) stance, iii) feet
affected, iv) acute signs only and iv) acute and chronic signs. ’Lame at trot’ and ‘short stilted
gait at trot’ were excluded from the lameness tree model due to large numbers of missing data
where these signs had not been assessed (missing for 55.0% and 49.4% of observations,
respectively).

After consideration of the five preliminary trees, those variables identified in each
preliminary tree as being the greatest differentiators in terms of laminitis were analysed
together to form two combined tree models: (i) a combined model of lameness, stance
characteristics, feet affected and observed laminitis-related acute clinical signs to reflect
active episodes of laminitis in horses with no evidence of chronic laminitis, and (ii) a
combined model of lameness, stance characteristics, feet affected and observed laminitis-
related acute and chronic clinical signs to reflect active episodes of laminitis in horses with
evidence of previous SADP failure (chronic laminitis).

Results

Recruitment

Group A
All five veterinary establishments visited agreed to provide data for this study. In addition, 25 first-opinion veterinary practices agreed to participate, of which 14 (46.7%) contributed data to the study. Lameness forms were provided for 238 unique horses/ponies: 89 (37.4%) from referral practices and 149 (62.6%) from first-opinion practices. Thirty-seven animals (15.5%) were diagnosed by veterinary practitioners as laminitis cases and 201 (84.5%) were diagnosed with non-laminitis lameness. Other causes of lameness included, but were not restricted to, proximal suspensory desmitis (n=40, 17.3%), foot abscesses (n=22, 9.5%) and fractures (n=16, 6.9%). Overall, 73 (30.7%: CI 24.8, 36.5) Group A animals were diagnosed on the basis of clinical signs without further diagnostic procedures (cases 32.4%: CI 17.3, 47.5, controls 30.3%: CI 24.0, 36.7) and 155 (65.1%: CI 59.1, 71.2) animals were diagnosed using multiple diagnostic modalities (cases 62.2%: CI 46.5, 77.8, controls 65.7%: CI 59.1, 72.2). Stated diagnostic techniques used to investigate lameness in the laminitic cases included clinical examination (94.6%: CI 87.3, 100), radiography (64.9%: CI 49.5, 80.2), regional anaesthesia (nerve blocks) (13.5%: CI 2.5, 24.5), surgical/post-mortem findings (13.5%: CI 2.5, 24.5) and blood testing for concurrent predisposing metabolic conditions (8.1%: CI 0.01, 16.9).

Group B

The recruitment of cases is described in detail in Wylie et al. (2013a). In brief, LRFs were received for 551 unique horses/ponies from 30 first-opinion veterinary practices over the two-year period.

Clinical signs

The prevalence of the presence of each clinical sign in laminitis cases and non-laminitis lame controls, excluding records where the sign was not assessed, and difference in prevalence between the two groups are provided in Table 1. The overall prevalence of specific clinical signs ranged from 2.7% (CI 1.5, 3.9) for ‘sole prolapse’ (number assessed = 706) to 85.0% (CI 81.4, 88.7) for ‘lame at trot’ (number assessed = 367). The difference in prevalence...
between cases and controls ranged from -14.1% for ‘lame at trot’ (sign more common in controls) to +71.9% for ‘short stilted gait at walk’ (found more often in cases than controls).

There were five clinical signs with a difference in prevalence of greater than +50%: three lameness-related signs (‘reluctance to walk’, ‘short, stilted gait at walk’ and ‘difficulty turning’), one stance-related sign (‘shifting weight’) and one acute clinical sign (‘increased digital pulse’).

The logistic regression results are provided in Table 2. For each clinical sign there was a statistically significant increase in the odds of occurrence in the laminitis (cases) group, with the exception of ‘recumbent’, ‘lame at trot’ and ‘coronary band swelling’ for which there was no significant difference (P>0.05). No odds ratio could be calculated for ‘coronary band depression’ or ‘sole prolapse’ because no animals in the control group showed these clinical signs.

The preliminary tree models are provided in Supplementary Information Item 3. Consideration of the lameness tree identified the best discriminator as ‘short stilted gait at walk’; 93.1% (CI 90.6, 95.5) of animals with that clinical sign had laminitis; 94.1% (CI 91.6, 96.5) of animals with both ‘short stilted gait at walk’ and ‘difficulty turning’ had laminitis.

Of the 219 animals that did not have a ‘short stilted gait at walk’, only 27.9% (CI 21.9, 33.8) had laminitis – however, if they had ‘difficulty turning’ 59.7% (CI 48.0, 71.5) had laminitis.

For animals where both these clinical signs were absent, if they were ‘reluctant to walk’ 40.0% (CI 15.2, 64.8) had laminitis.

The best discriminator in the stance tree was ‘shifting weight’; 98.1% (CI 96.6, 99.6) of animals with that clinical sign had laminitis. In animals that were not ‘shifting weight’, ‘front feet placed in front of the body’ identified 94.2% (CI 89.2, 99.1) as laminitis cases.

In the ‘acute clinical signs’ tree, 91.0% (CI 88.5, 93.5) of animals with ‘increased digital pulses’ had laminitis, and ‘pain on sole pressure’ in the absence of ‘increased digital pulses’ identified 69.0% (CI 52.1, 85.8) as cases of laminitis.
The best discriminator in the ‘acute and chronic clinical signs’ tree was ‘increased digital pulses’; 91.0% (CI 88.4, 93.5) of animals with that clinical sign had laminitis, and the additional presence of ‘divergent growth rings’ identified 100% as laminitis cases.

The tree diagram combining categories of clinical signs for acute laminitis with lameness, stance and feet is provided in Figure 1. Presence of ‘lameness in both forelimbs’ was the best discriminator, with 93.1% (CI 90.7, 95.5) of animals with this clinical sign belonging to the laminitis group. Additional presence of an ‘increased digital pulse’ improved diagnostic accuracy to 99% (CI 97.9, 100) (P<0.001). A ‘bilateral forelimb lameness’ with no ‘increase in digital pulse’, yet presence of a ‘short stilted gait at walk’ identified 100% of animals as laminitis cases, however statistical analysis of this sub-group and the presence of ‘shifting weight’ was not possible due to small numbers of animals with these signs. The presence of ‘pain on sole pressure’ was not statistically associated with improved clinical discrimination (P=0.30).

The overall tree diagram considering both acute and chronic laminitis clinical signs with lameness, stance and feet is provided in Figure 2. Presence of ‘lameness in both forelimbs’ was again the best discriminator; 92% of animals with this clinical sign had laminitis (P<0.001). The additional presence of ‘increased digital pulses’ improved this to 99% of cases (P<0.001). Presence of a ‘flat/convex sole’ also provided improved clinical discrimination (P=0.002). It was not possible to assess statistical significance for ‘short stilted gait at walk’, or ‘shifting weight’, again because of the small numbers of animals with these signs.

Discussion

This is the first study comparing the prevalence of veterinary-recognised clinical signs in laminitis and other causes of lameness to evaluate the capabilities of discrimination for differential diagnosis.
A wide range of clinical signs were displayed by the laminitic cases, in agreement with previous reviews (Baxter 1994; Eustace 2010; Hunt and Wharton 2010; Swanson 1999). There were no individual, or combinations of, clinical signs present in every case. The clinical signs that were considered to be the most useful on the basis of this work were three features of lameness investigation (‘reluctance to walk’, ‘short, stilted gait at walk’ and ‘difficulty turning’), one feature of stance (‘shifting weight’) and an ‘increased digital pulse’.

All these signs had a difference in prevalence of over 50% between active laminitis cases (signs more prevalent) and non-laminitic lame horses (signs less prevalent). As the clinical details forms were designed to gather information on laminitis, it may be expected there was a statistically significant difference in the distribution of many of the clinical signs between laminitis cases and non-laminitis lameness controls. For the purposes of this study it was considered important to focus only on the lameness-associated clinical signs for two main reasons. Firstly, because regardless of the underlying pathological process of laminitis, the common feature of all cases of laminitis is the induction of pathological changes within the SADP, resulting in overt foot pain and clinical signs related to lameness (Baxter 1994; Budras and others 2009a; Budras and others 2009b; Eades 2010), and as a consequence previous epidemiological studies of laminitis have used only lameness-associated clinical signs as their case inclusion/exclusion criteria (Alford and others 2001; Dorn and others 1975; Hood and others 1994; Menzies-Gow and others 2010a; Parsons and others 2007; Slater and others 1995). Secondly, to keep the amount of work required by the veterinary surgeons to a minimum to enhance compliance. Collection of data regarding systemic clinical signs would have increased the amount of work required by the participating veterinary practitioners, and it was considered that their presence would aid the diagnosis of the underlying, predisposing condition rather than laminitis directly. Nevertheless, it is acknowledged that as part of the diagnostic process veterinarians will use the animal’s history and other clinical features in making their diagnosis. As such, collection of additional clinical data in future studies would be useful to improve the current decision trees, as well as to generate further trees pertaining to, for example, signs of colic.
Currently, visual assessment of lameness is a highly subjective process. Many kinetic and
kinematic methods for objectively assessing lameness have been reviewed previously (Hood
and others 2001; Keegan 2010), and it is possible that these may prove to be more reliable
than visual assessment alone in the future (Dyson 2011). Further evaluation of techniques to
evaluate stance and gait characteristics of lame animals may result in a more objective
method of diagnosing and/or scoring laminitis, as well as other reasons for lameness.
Recently developed techniques allow assessment of horse movement without impeding the
use of the animal, and may have a role in evidence-based assessment of lameness in horses in
veterinary practice in the future (Dyson 2011; Keegan 2010; Pfau and others 2007). There
was no statistically significant difference in prevalence of ‘lameness at trot’ between cases
and controls, and this variable was not included in the tree analysis due to large number of
laminitic cases that were not assessed at trot. The high level of missing data is likely to
reflect the appropriate reluctance of veterinary surgeons to trot suspect laminitis cases on
welfare grounds and so as not to exacerbate lamellar pathology, and the common use of
intrasynovial anaesthesia for diagnosis of other lamenesses commonly evaluated at the trot.
Two clinical signs – ‘coronary band depression’ and ‘prolapsed sole’ - were pathognomonic
for laminitis in this study, were only found in 13.6% and 3.7% of cases, respectively. Both
these signs can indicate disease progression to chronic phase laminitis (i.e. SADP failure and
distal phalanx dislocation within the hoof); therefore these signs would not be expected to be
present in acute cases, unless they were also suffering from concurrent pathology such as
chronic seedy toe/white line disease or severe club feet (Kuwano and others 1999). These
results may help veterinary practitioners prioritise where to begin their clinical examination
of an active laminitis case, as primary inspection of the sole and coronary band would prevent
the animal undergoing lameness evaluation which could precipitate further SADP
damage/failure.
Two overall combined trees were generated to reflect the two clinical scenarios of active
laminitis, one consisting of clinical signs considered to occur in the acute phase of the
disease, and one that also contained data reflective of lamellar damage and displacement of
the SADP. In both scenarios, the presence of a bilateral lameness was the most useful
discriminator, followed by the presence of increased digital pulses. Whilst these clinical
presentations are not specific for laminitis, this work provides an evidence-base for case
diagnosis and future epidemiological case definitions.

This work did not provide evidence for some commonly cited clinical signs of diagnostic
importance. In particular, ‘front feet in front of the body’, taken to represent the classic
‘laminitis stance’, was found in less than half of the diagnosed active laminitis cases, and did
not prove to be a useful discriminator. Therefore, despite much anecdotal publicity of this
visibly apparent clinical sign (Stashak 2002; Swanson 1999), veterinarians, researchers and
owners should be careful to avoid relying on its presence for making a diagnosis of laminitis
[40].

The use of clinical recording forms based on evidence-based recommendations may help
veterinary practitioners structure their clinical examination of an active laminitis case.
However, in medical practice well-validated diagnostic algorithms tools are underused
(Pearson and others 1994). For example, a simple predictor based on seven clinical signs for
ischaemia in humans was only used in 2.8% of cases (Corey and Merenstein 1987). The
clinical usefulness of developing such a technique would need to be established by a survey
of first-opinion practitioners to decide whether such a tool would provide useful assistance in
laminitis diagnosis in the field.

The limitations of this study include diagnosis by a number of different veterinary clinicians,
which may have different levels of experience. To take this into account veterinary practice
was included in the generation of the odds ratio estimates, however, misclassification bias
may still occur, although this would have tended to shift the odds ratios towards non-
significant. Similarly, as it is not possible to obtain a definitive diagnosis of active laminitis
in an observational epidemiological study there was the potential for misclassification of
cases and controls. For this reason, veterinary recordings of the clinical signs observed was
used, as described in Wylie et al., (Wylie and others 2013a, b) and misclassification would
have again reduced the ability to detect significant differences rather than produce anomalous
significant differences. Inclusion of data in the tree models required the animals to have data
for each included variable, resulting in smaller numbers of contributing individuals as the
trees became more complex. Consequently, although the variables retained high statistical
significance, smaller contributing sample sizes led to larger confidence intervals around
prevalence point estimates and the need therefore for some caution in their interpretation.

It is acknowledged that there may be some bias in the data if veterinary practitioners did not
accurately detail the clinical signs which they observed and perhaps listed clinical signs that
they anticipated to reflect their diagnosis. Furthermore, it would be interesting to collect
greater numbers of control animals to conduct the analyses between specific control
lamenesses, such as forelimb foot pain only, to highlight more subtle differences between
presenting pathologies.

In conclusion, separate clinical signs were compared between laminitis and non-laminitis
cases of lameness, and no individual sign was present in every case of laminitis. The clinical
signs which best indicated a case of laminitis were characteristic of the chronic phase of the
disease only. Improved evaluation of the clinical signs displayed by laminitic animals
examined by first-opinion practitioners will lead to equine welfare improvements, as the best
recoveries occur in animals undergoing intensive treatment within several hours of the
appearance of the disease (Redden 1986). Future consensus on a basic disease definition may
permit future systematic review and meta-analysis of epidemiological investigations
collecting similar information in different locations worldwide.

Acknowledgements
The authors would like to acknowledge the late Dr Simon Collins, the members of the expert panel who reviewed the data collection tool, and all of the veterinary practices who helped provide data for this study.
References

Table 1: Prevalence and 95% confidence intervals (CI) for each clinical sign in both laminitis cases and non-laminitis lameness controls, excluding records where the sign was not assessed, and the percentage of horses that were assessed with corresponding difference in prevalence.

<table>
<thead>
<tr>
<th>Clinical signs</th>
<th>Cases (n=588)</th>
<th>Controls (n=201)</th>
<th>Overall (n=789)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Present (n)</td>
<td>Absent (n)</td>
<td>Present (n)</td>
</tr>
<tr>
<td>Lameness</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recumbent</td>
<td>24</td>
<td>479</td>
<td>4.8</td>
</tr>
<tr>
<td>Refusal to move unless forced</td>
<td>148</td>
<td>361</td>
<td>29.1</td>
</tr>
<tr>
<td>Reluctance walk</td>
<td>395</td>
<td>155</td>
<td>71.8</td>
</tr>
<tr>
<td>Lame walk</td>
<td>409</td>
<td>95</td>
<td>81.2</td>
</tr>
<tr>
<td>Lame trot</td>
<td>152</td>
<td>42</td>
<td>78.4</td>
</tr>
<tr>
<td>Short stilted walk</td>
<td>446</td>
<td>66</td>
<td>87.1</td>
</tr>
<tr>
<td>Short stilted trot</td>
<td>125</td>
<td>55</td>
<td>69.4</td>
</tr>
<tr>
<td>Difficulty turning</td>
<td>456</td>
<td>47</td>
<td>90.7</td>
</tr>
<tr>
<td>Stance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifting weight</td>
<td>316</td>
<td>256</td>
<td>55.2</td>
</tr>
<tr>
<td>Front feet in front</td>
<td>250</td>
<td>317</td>
<td>44.1</td>
</tr>
<tr>
<td>Condition</td>
<td>Feet Affected</td>
<td>Acute</td>
<td>Chronic</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Reluctance lift foot</td>
<td>300 269 52.7</td>
<td>520 50 91.2 88.9 93.6</td>
<td>27 505 5.1 3.2 6.9</td>
</tr>
<tr>
<td>Bilateral fore</td>
<td>538 44 92.4</td>
<td>45 150 23.1 17.2 29.0</td>
<td>0 192 0.0</td>
</tr>
<tr>
<td>Bilateral hind</td>
<td>244 323 43.0</td>
<td>30 164 15.5 10.4 20.6</td>
<td>148 378 28.1 24.3 32.0</td>
</tr>
<tr>
<td>All four feet</td>
<td>234 348 40.2</td>
<td>35 149 19.0 13.4 24.7</td>
<td>263 271 49.3 45.0 53.5</td>
</tr>
<tr>
<td>Increased digital pulse</td>
<td>324 218 59.8</td>
<td>229 186 3.1 0.7 5.6</td>
<td>232 291 44.4 40.1 48.6</td>
</tr>
<tr>
<td>Increased hoof temperature</td>
<td></td>
<td></td>
<td>148 383 25.2 21.4 29.0</td>
</tr>
<tr>
<td>Pain sole pressure</td>
<td></td>
<td></td>
<td>71 445 13.8 10.8 16.7</td>
</tr>
<tr>
<td>Coronary band swelling</td>
<td></td>
<td></td>
<td>73 462 13.6 10.7 16.6</td>
</tr>
<tr>
<td>Coronary band depression</td>
<td></td>
<td></td>
<td>3 190 1.6 0.0 3.3</td>
</tr>
<tr>
<td>Divergent growth rings</td>
<td></td>
<td></td>
<td>129 383 25.2 21.4 29.0</td>
</tr>
<tr>
<td>Change hoof wall angle</td>
<td></td>
<td></td>
<td>71 445 13.8 10.8 16.7</td>
</tr>
<tr>
<td>Wall separation</td>
<td></td>
<td></td>
<td>3 190 1.6 0.0 3.3</td>
</tr>
<tr>
<td>Flat/convex sole</td>
<td></td>
<td></td>
<td>232 291 44.4 40.1 48.6</td>
</tr>
<tr>
<td>Widened white line</td>
<td></td>
<td></td>
<td>133 368 26.6 22.7 30.4</td>
</tr>
<tr>
<td>Pink crescent</td>
<td></td>
<td></td>
<td>46 464 9.0 6.5 11.5</td>
</tr>
<tr>
<td>Sole prolapse</td>
<td></td>
<td></td>
<td>6 186 3.1 0.7 5.6</td>
</tr>
</tbody>
</table>

Veterinary Record
Table 2: Odds ratios and 95% confidence intervals (CI), with corresponding Wald P-values, for each clinical sign in laminitis cases compared to non-laminitis lameness controls. ORs are adjusted for the effect of veterinary practice.

<table>
<thead>
<tr>
<th>Clinical Signs</th>
<th>Number</th>
<th>Adjusted Odds Ratio</th>
<th>95% Confidence Interval</th>
<th>Wald P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lameness</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recumbent</td>
<td>695</td>
<td>5.1</td>
<td>0.5, 51.4</td>
<td>0.17</td>
</tr>
<tr>
<td>Refusal to move unless forced</td>
<td>703</td>
<td>3.5</td>
<td>1.6, 7.7</td>
<td>0.002</td>
</tr>
<tr>
<td>Reluctance walk</td>
<td>745</td>
<td>4.4</td>
<td>2.2, 8.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Lame walk</td>
<td>702</td>
<td>2.2</td>
<td>1.0, 4.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Lame trot</td>
<td>367</td>
<td>0.3</td>
<td>0.0, 2.6</td>
<td>0.29</td>
</tr>
<tr>
<td>Short stilted walk</td>
<td>703</td>
<td>9.4</td>
<td>4.5, 19.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Short stilted trot</td>
<td>352</td>
<td>3.9</td>
<td>1.6, 9.6</td>
<td>0.003</td>
</tr>
<tr>
<td>Difficulty turning</td>
<td>692</td>
<td>16.9</td>
<td>7.0, 40.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Stance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shifting weight</td>
<td>767</td>
<td>17.7</td>
<td>6.8, 45.6</td>
<td><0.001</td>
</tr>
<tr>
<td>Front feet in front</td>
<td>763</td>
<td>24.5</td>
<td>7.9, 75.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Reluctance lift foot</td>
<td>762</td>
<td>4.0</td>
<td>1.9, 8.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Feet Affected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral fore</td>
<td>766</td>
<td>40.5</td>
<td>16.3, 100.9</td>
<td><0.001</td>
</tr>
<tr>
<td>Bilateral hind</td>
<td>748</td>
<td>21.3</td>
<td>7.7, 59.1</td>
<td><0.001</td>
</tr>
<tr>
<td>All four feet</td>
<td>780</td>
<td>96.3</td>
<td>22.1, 419.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased digital pulse</td>
<td>765</td>
<td>13.2</td>
<td>6.0, 29.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Increased hoof temperature</td>
<td>736</td>
<td>5.7</td>
<td>2.8, 11.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Pain sole pressure</td>
<td>718</td>
<td>2.7</td>
<td>1.4, 5.3</td>
<td>0.005</td>
</tr>
<tr>
<td>Chronic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coronary band swelling</td>
<td>727</td>
<td>1.1</td>
<td>0.3, 3.9</td>
<td>0.88</td>
</tr>
<tr>
<td>Coronary band depression</td>
<td>724</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Divergent growth rings</td>
<td>719</td>
<td>96.3</td>
<td>17.1, 542.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Change hoof wall angle</td>
<td>705</td>
<td>21.1</td>
<td>6.3, 71.0</td>
<td><0.001</td>
</tr>
<tr>
<td>Wall separation</td>
<td>702</td>
<td>58.5</td>
<td>5.1, 672.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Flat/convex sole</td>
<td>712</td>
<td>15.5</td>
<td>5.9, 40.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Widened white line</td>
<td>685</td>
<td>17.3</td>
<td>5.5, 54.5</td>
<td><0.001</td>
</tr>
<tr>
<td>Pink crescent</td>
<td>700</td>
<td>16.5</td>
<td>2.0, 136.5</td>
<td>0.009</td>
</tr>
<tr>
<td>Sole prolapse</td>
<td>706</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Figure 1: Tree diagram of the occurrence of laminitis for combinations of lameness, stance, feet affected, and acute laminitis clinical signs. Data were from 586 horses/ponies for which information on each clinical sign was described, of which 74% had laminitis. The percentage at the end of each branch are the occurrence rates of laminitis in those horses/ponies with that particular combination of clinical signs, and the value in brackets the number of horses/ponies of that particular combination of clinical signs.

Figure 2: Overall tree diagram of the occurrence of laminitis for combinations of lameness, stance, feet affected, acute and chronic laminitis clinical signs. Data were from 551 horses/ponies for which information on each clinical sign was described, of which 72% had laminitis. The percentage at the end of each branch are the occurrence rates of laminitis in those horses/ponies with that particular combination of clinical signs, and the value in brackets the number of horses/ponies of that particular combination of clinical signs.

Supplementary Information Item 1: Lameness reporting form (LM) used to investigate the clinical signs of laminitis in Group A recruiting both cases and controls.

Supplementary Information Item 2: Laminitis reporting form (LRF) used to investigate the clinical signs of laminitis in Group B recruiting cases only.

Supplementary Information Item 3: Preliminary Tree models of the occurrence of laminitis for combinations of lameness, stance, feet affected, acute and chronic laminitis clinical signs.
Figure 1: Tree diagram of the occurrence of laminitis for combinations of lameness, stance, feet affected, and acute laminitis clinical signs. Data were from 586 horses/ponies for which information on each clinical sign was described, of which 74% had laminitis. The percentage at the end of each branch are the occurrence rates of laminitis in those horses/ponies with that particular combination of clinical signs, and the value in brackets the number of horses/ponies of that particular combination of clinical signs.

85x53mm (300 x 300 DPI)
Figure 2: Overall tree diagram of the occurrence of laminitis for combinations of lameness, stance, feet affected, acute and chronic laminitis clinical signs. Data were from 551 horses/ponies for which information on each clinical sign was described, of which 72% had laminitis. The percentage at the end of each branch are the occurrence rates of laminitis in those horses/ponies with that particular combination of clinical signs, and the value in brackets the number of horses/ponies of that particular combination of clinical signs.

85x53mm (300 x 300 DPI)